Skip Nav Destination
Close Modal
Search Results for
shielding gas composition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 630 Search Results for
shielding gas composition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2003
Fig. 21 Effect of gas tungsten arc weld shielding gas composition on the corrosion resistance of two austenitic stainless steels. Welded strip samples were tested according to ASTM G 48; test temperature was 35 °C (95 °F). Source: Ref 8
More
Image
Published: 31 October 2011
Fig. 9 Effect of electrode tip geometry and shielding gas composition on weld pool shape for spot-on-plate welds. Welding parameters: current, 150 A; duration, 2 s
More
Image
Published: 01 January 1993
Fig. 9 Effect of electrode tip geometry and shielding gas composition on weld pool shape for spot-on-plate welds. Welding parameters: current, 150 A; duration, 2 s
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001336
EISBN: 978-1-62708-173-3
... shape and shielding gas composition in the GTAW process. arc welding cathode tip shape electron discharge gas tungsten arc welding heat transfer nonthermionic emission shielding gas composition thermionic emission THE GAS-TUNGSTEN ARC WELDING (GTAW) process is performed using a welding...
Abstract
The gas-tungsten arc welding (GTAW) process is performed using a welding arc between a nonconsumable tungsten-base electrode and the workpieces to be joined. The arc discharge requires a flow of electrons from the cathode through the arc column to the anode. This article discusses two cases of electron discharge at the cathode: thermionic emission and nonthermionic emission, also called cold cathode, or field emission. It schematically illustrates relative heat transfer contributions to workpiece in the GTAW process. The article provides information on the effects of cathode tip shape and shielding gas composition in the GTAW process.
Book Chapter
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003622
EISBN: 978-1-62708-182-5
.... The effects of gas-tungsten arc weld shielding gas composition and heat-tint oxides on corrosion resistance are also discussed. The article explains microbiological corrosion of butt welds in water tanks with the examples. In addition, it provides information on corrosion of ferritic stainless steel weldments...
Abstract
This article reviews the metallurgical factors associated with welding. It provides a discussion on the preferential attack associated with weld metal precipitates in austenitic stainless steels. The article describes the corrosion associated with postweld and weld backing rings. The effects of gas-tungsten arc weld shielding gas composition and heat-tint oxides on corrosion resistance are also discussed. The article explains microbiological corrosion of butt welds in water tanks with the examples. In addition, it provides information on corrosion of ferritic stainless steel weldments and duplex stainless steel weldments.
Image
Published: 31 October 2011
Fig. 2 Plot of weld-metal impact energy versus test temperature as a function of shielding gas composition. Source: Ref 5
More
Image
Published: 01 January 1993
Fig. 2 Plot of weld metal impact energy versus test temperature as a function of shielding gas composition. Source: Ref 8
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
...-circuiting transfer, globular transfer, and spray transfer. The mode that is obtained depends on a number of factors, including: Electrode and shielding gas compositions Electrode diameter Welding current and voltage levels Electrical polarity Power source output waveform and control...
Abstract
This article discusses the operation principles, advantages, limitations, process parameters, consumables or electrodes, the equipment used, process variations, and safety considerations of gas metal arc welding (GMAW). It reviews the important variables of the GMAW process that affect weld penetration, bead shape, arc stability, productivity, and overall weld quality. These include welding consumables, equipment settings, and gun manipulation. The major components of a GMAW installation such as a welding gun, shielding gas supply, electrode feed unit, power source, and associated controls are discussed.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005664
EISBN: 978-1-62708-174-0
...% of the energy going into the weld pool, thus making current density the single most important welding parameter that determines pool shape. However, events at the anode can only be controlled indirectly by controlling the cathode. Anode spot stability does depend somewhat on shielding gas composition...
Abstract
This article provides the basic physics of the two most widely used arc welding processes: gas tungsten arc welding and gas metal arc welding. It describes the various control parameters of these processes such as arc length control, voltage control, heat input control, and metal-transfer control.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001340
EISBN: 978-1-62708-173-3
... potential is linked to elemental loss of silicon and manganese in the weld metal, to weld metal oxygen content, and to weld mechanical properties. Because a relatively complex relationship exists between the loss of alloying elements, the composition of the shielding gas, and the mechanical properties...
Abstract
The shielding gas used in a welding process has a significant influence on the overall performance of the welding system. This article discusses the basic properties of a shielding gas in terms of ionization potential, thermal conductivity, dissociation and recombination, reactivity/oxidation potential, surface tension, gas purity, and gas density. It describes the characteristics of the components of a shielding gas blend. The article discusses the selection of shielding gas for gas-metal arc welding (GMAW), gas-tungsten arc welding (GTAW), and plasma arc welding (PAW), as well as the influence of shielding gas on weld mechanical properties. It concludes with a discussion on flux-cored arc welding.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005597
EISBN: 978-1-62708-174-0
..., and to weld mechanical properties. Because a relatively complex relationship exists between the loss of alloying elements, the composition of the shielding gas, and the mechanical properties of the resulting weld metal, it is difficult to select an optimal gas blend that will work well with all types...
Abstract
The shielding gas used in an arc welding process has a significant influence on the overall performance of the welding system. These gases are argon, helium, oxygen, hydrogen, nitrogen, and carbon dioxide. This article discusses the shielding gas selection criteria for plasma arc welding, gas metal arc welding, and flux cored arc welding. It describes the basic properties of shielding gases, namely, dissociation, recombination, reactivity potential, oxidation potential, and gas purity. The article also provides information on the influence of the shielding gas on weld mechanical properties and self-shielded flux cored arc welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005582
EISBN: 978-1-62708-174-0
... on argon plasma gas. Argon provides effective shielding, being heavier than air, and is cheaper than helium. Shielding gas selection is based on the type of base metal ( Table 2 ). Plasma and shielding gas compositions Table 2 Plasma and shielding gas compositions Material Plasma gas...
Abstract
Plasma arc welding (PAW) can be defined as a gas-shielded arc welding process where the coalescence of metals is achieved via the heat transferred by an arc that is created between a tungsten electrode and a workpiece. This article focuses on the operating principles and procedures, current and operating modes, advantages, disadvantages, and applications of PAW. It discusses the personnel and equipment requirements, as well as the joints used in the process. The power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases are also reviewed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001357
EISBN: 978-1-62708-173-3
.... Shielding gas selection is based on the type of base metal ( Table 2 ). Plasma and shielding gas compositions Table 2 Plasma and shielding gas compositions Material Plasma gas Shielding gas Mild steel Argon Argon Argon-2–5% H 2 (a) Low-alloy steels Argon Argon Austenitic...
Abstract
Plasma arc welding (PAW) can be defined as a gas-shielded arc welding process where the coalescence of metals is achieved via the heat transferred by an arc that is created between a tungsten electrode and a workpiece. This article discusses the melt-in mode and the keyhole mode of the PAW process, as well as the advantages and disadvantages. It describes the components of a basic PAW system, namely the power source, plasma control console, water cooler, welding torch, and gas supply system for the plasma and shielding gases. The article provides information on the applications of the PAW process and discusses the typical components and joints used. It concludes with information on personnel requirements and safety issues.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005600
EISBN: 978-1-62708-174-0
... to 0.39 in.) The variables for GMAW, as discussed in the article “Gas Metal Arc Welding” in this Volume, include: Arc current, voltage, and polarity Wire feed speed Electrode diameter and composition Electrode extension (contact tip-to-work distance) Shielding gas composition...
Abstract
Hybrid laser arc welding (HLAW) is a metal joining process that combines laser beam welding (LBW) and arc welding in the same weld pool. This article provides a discussion on the major process variables for two modes of operation of HLAW, namely, stabilization mode and penetration mode. The major process variables for either mode of operation include three sets of welding parameters: the variables for the independent LBW and gas metal arc welding processes and welding variables that are specific to the HLAW process. The article discusses the advantages, limitations, and applications of the HLAW and describes the major components and consumables used for HLAW. The components include the laser source, gas metal arc welding source, hybrid welding head, and motion system. The article also describes the typical sources of defects and safety concerns of HLAW.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001354
EISBN: 978-1-62708-173-3
... of factors, the most influential of which are: Magnitude and type of welding current Electrode diameter Electrode composition Electrode extension beyond the contact tip or tube Shielding gas Power supply output Short-Circuiting Transfer Short-circuiting transfer encompasses...
Abstract
Gas-metal arc welding (GMAW) is an arc welding process that joins metals together by heating them with an electric arc that is established between a consumable electrode (wire) and a workpiece. This article discusses the advantages and limitations, operating principle, metal transfer mechanisms, and process variables of the GMAW process. The process variables include welding current, polarity, arc voltage, travel speed, electrode extension, electrode orientation, and electrode diameter. The major components of the basic equipment for a typical GMAW installation are discussed. The article also describes two consumable elements, such as electrode and shielding gas, of the GMAW process. It concludes with information on the safety aspects.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006515
EISBN: 978-1-62708-207-5
... cracking) Filler-metal diameter Tungsten type and diameter End shape of tungsten and end diameter Current type and amperes Arc voltage Composition of shielding gas Gas cup diameter Shielding gas flow rate Backside gas shield Travel speed The type of current used...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001441
EISBN: 978-1-62708-173-3
... titanium and austenitic stainless steels. Zirconium has a low coefficient of thermal expansion, which contributes to low distortion during welding. Because of the reactivity of zirconium with oxygen, nitrogen, and hydrogen, the metal must be shielded during welding with high-purity inert gas or a good...
Abstract
Zirconium and its alloys are available in two general categories: commercial grade and reactor grade. This article discusses the welding processes that can be used for welding any of the zirconium alloys. These include gas-tungsten arc welding (GTAW), gas-metal arc welding (GMAW), plasma arc welding (PAW), electron-beam welding (EBW), laser-beam welding (LBW), friction welding (FRW), resistance welding (RW), resistance spot welding (RSW), and resistance seam welding (RSEW). The article reviews the selection of shielding gases and filler metals for welding zirconium alloys. It concludes with a discussion on process procedures for welding zirconium alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001355
EISBN: 978-1-62708-173-3
... composition. The final position is the shielding-type designator. T-1 types are designed for use with CO 2 or Ar-CO 2 shielding gases (classification requires the use of CO 2 ). T-2 types are designed for use with Ar-2O 2 shielding gas. T-3 types are self-shielded. A T-G type is included for electrodes...
Abstract
In the flux-cored arc welding (FCAW) process, the heat for welding is produced by an electric arc between a continuous filler metal electrode and a workpiece. This article discusses the advantages and disadvantages and applications of the FCAW process. It schematically illustrates the semiautomatic FCAW equipment used in the gas-shielded FCAW process. The article discusses the manufacture of flux-cored electrodes and the classification of electrodes, such as carbon and low-alloy steel electrodes, stainless steel electrodes, and nickel-base electrodes. The functions of common core ingredients in FCAW electrodes are listed in a table.