Skip Nav Destination
Close Modal
Search Results for
sheet metal forming simulation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 625 Search Results for
sheet metal forming simulation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005540
EISBN: 978-1-62708-197-9
... of simple forming operations. It focuses on metal stamping simulation based on the finite-element methods or model (FEM) with emphasis on software tools using the three-dimensional FEM technology. The article discusses two aspects of particular importance in finite-element analysis of sheet forming...
Abstract
Simulation programs are becoming more effective tools in reducing the need for physical testing and the avoidance of costly downstream problems by solving the problems upfront in the early development stage. This article provides a brief review of the history and applied analysis of simple forming operations. It focuses on metal stamping simulation based on the finite-element methods or model (FEM) with emphasis on software tools using the three-dimensional FEM technology. The article discusses two aspects of particular importance in finite-element analysis of sheet forming and springback analysis: the type of solution algorithm/governing equation and the type of element. The article provides information on various models for material yield criteria.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005151
EISBN: 978-1-62708-186-3
... Abstract This article focuses on the technology breakthroughs that make forming simulation a routine work throughout the industry. It discusses many forms of the computer-aided engineering (CAE) methodology. The article describes several failure criteria to predict the failure of sheet metal...
Abstract
This article focuses on the technology breakthroughs that make forming simulation a routine work throughout the industry. It discusses many forms of the computer-aided engineering (CAE) methodology. The article describes several failure criteria to predict the failure of sheet metal. It explains the numerical procedure for sheet metal forming and reviews the important technical issues in CAE simulations. The article provides information on the applications and process of metal-forming simulation. It also reviews the capabilities of major systems that are popular among sheet metal forming users worldwide.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005168
EISBN: 978-1-62708-186-3
... Abstract This article discusses the numerical simulation of the forming of aluminum alloy sheet metals. The macroscopic and microscopic aspects of the plastic behavior of aluminum alloys are reviewed. The article presents constitutive equations suitable for the description of aluminum alloy...
Abstract
This article discusses the numerical simulation of the forming of aluminum alloy sheet metals. The macroscopic and microscopic aspects of the plastic behavior of aluminum alloys are reviewed. The article presents constitutive equations suitable for the description of aluminum alloy sheets. It explains testing procedures and analysis methods that are used to measure the relevant data needed to identify the material coefficients. The article describes the various formulations of finite element methods used in sheet metal forming process simulations. Stress-integration procedures for both continuum and crystal-plasticity mechanics are also discussed. The article also provides various examples that illustrate the simulation of aluminum sheet forming.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005100
EISBN: 978-1-62708-186-3
..., design, and control of sheet-forming processes. advanced high-strength steels aluminum dieless forming expensive steel dies flexible manufacturing high-velocity metal forming magnesium alloys peen forming process simulation rapid prototyping rubber-pad forming sheet forming superplastic...
Abstract
Sheet forming comprises deformation processes in which a metal blank is shaped by tools or dies, primarily under the action of tensile stresses. This article discusses the classification of sheet-forming processes for obtaining desired dimensional features. It describes different process-related developments, namely, superplastic forming of aluminum, forming of tailor-welded blanks, rubber-pad forming, and high-velocity metal forming. The article explains cost-effective approaches of evaluating tooling designs prior to the manufacture of expensive steel dies and dieless forming techniques such as thermal forming and peen forming. It provides information on the application of advanced high-strength steels, magnesium alloys, and various ultrafine-grain materials for superplastic sheet forming. The article concludes with information on the development and application of simulation, design, and control of sheet-forming processes.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001031
EISBN: 978-1-62708-161-0
... commonly used formable grades. It also lists the typical mechanical properties for common grades of hot-rolled and cold-rolled steel sheets. circle grid analysis mechanical properties metallic coatings microstructure simulative forming tests steel composition steel sheet formability sheet...
Abstract
Steel sheet is widely used for industrial and consumer products, partly because it is relatively strong, easily joined, and readily available at moderate cost. This article discusses the mechanical properties and formability of steel sheet, the use of circle grid analysis to identify the properties of complicated shapes, and various simulative forming tests. The mechanical properties of steel sheet that influence its forming characteristics, either directly or indirectly, can be measured by uniaxial tension testing. The article covers the effects of steel composition, steelmaking practices, and metallic coatings, as well as the correlation between microstructure and formability. A guide to the selection of steel sheet is also included. The formability of steel sheet is related to various microstructural features of the sheet. The article describes some of the forming characteristics of the more commonly used formable grades. It also lists the typical mechanical properties for common grades of hot-rolled and cold-rolled steel sheets.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005150
EISBN: 978-1-62708-186-3
... on to the construction functions. computer-aided design computer-aided manufacturing draw forming formability forming limit curve sheet steels SINCE THE EARLY 1980s, ever-evolving computer technology and processing speed have brought about revolutionary changes to the sheet metal forming industry...
Abstract
This article describes grade designations of the various sheet steels used for draw forming. It discusses the specifications associated with most sheet draw forming materials. The article examines the behavior of stress- and strain-based forming limit curve (FLC). It provides a discussion on three separate frictional conditions acting in a draw die. The frictional conditions include the metal passing through a draw bead, the metal clamped in the binder, and the metal sliding across a die radius. The article also explains the basic steps in the vehicle development process. The steps involved in the thought process of direct engineering for formability are also explained. The article places considerable emphasis on the need for the designer to clearly define the die/tooling faces in the computer-aided design (CAD)/computer-aided manufacturing (CAM) system before the data are passed on to the construction functions.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005149
EISBN: 978-1-62708-186-3
... the improvements to the forming limit diagram technology. bending test biaxial stretch testing drawing formability formability testing intrinsic test limit diagrams Ohio State University test plane-strain tension testing sheet metal forming simulative test stretch-drawing stretching uniaxial...
Abstract
Sheet metal forming operations are so diverse in type, extent, and rate that no single test provides an accurate indication of the formability of a material in all situations. This article presents an overview of types of forming, formability problems, and principal methods of measuring deformation. It reviews the effect of materials properties and temperature on formability. The article provides a detailed discussion on the two major categories of formability tests such as the intrinsic test, including uniaxial tension testing, plane-strain tension testing, biaxial stretch testing, and simulative tests such as bending tests, stretching tests, the Ohio State University test, the drawing test, and stretch-drawing tests. It extends the correlation between simulative tests and materials properties using forming limit diagrams and circle grid analysis, and discusses the improvements to the forming limit diagram technology.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
... metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided. draw panel analysis fractures necks...
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005131
EISBN: 978-1-62708-186-3
... forming springback This article is intended as an introduction to the concepts of springback simulation as well as recommendations for its practice in a metal forming setting. Most of the developments focus on thin beams or sheets, where springback is most pronounced. The underlying mechanics...
Abstract
Springback refers to the elastically driven change of shape that occurs after deforming a body and then releasing it. This article presents an introduction to the concepts of springback simulation as well as recommendations for its practice in a metal forming setting of thin beams or sheets. It discusses bending with tension and more complex numerical treatments. The article addresses the limitations of the various assumptions followed in springback simulation. It provides a discussion on the design of dies and tooling using an assumed springback prediction capability.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009153
EISBN: 978-1-62708-186-3
..., the following difficulties exist with regard to the finite-element process simulation of incremental sheet metal forming processes ( Ref 2 ): Incremental sheet forming processes are characterized by a small plastic zone in relation to the component volume. This plastic zone moves continuously, or step...
Abstract
This article provides an overview of the incremental sheet forming (ISF) process and discusses the process variations of ISF. These variations include single-point incremental forming, two-point incremental forming, and kinematic incremental sheet forming. The article discusses the machines and equipment used in the process and describes the process parameters, process mechanics, and process limits. It illustrates multistage forming strategies and summarizes difficulties that exist with regard to the finite-element process simulation of ISF process. The article also describes hybrid process variations, such as stretch forming and laser-assisted ISF.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005132
EISBN: 978-1-62708-186-3
... and contours, which are producible by shot peen forming. The article concludes with a table that presents typical peen forming applications in the aircraft and aerospace industries. aerospace industries local compressive residual stress multiple-impact peening simulations sheet metal forming shot...
Abstract
Shot peen forming is a manufacturing process in which local compressive residual stresses form thin sheet metals and structural components in one or more dimensions. This article discusses the principle of the process with an emphasis on fundamental mechanisms. It presents the basic considerations in the simulation of shot peen forming and provides information on single impact and multiple-impact peening simulations. The article describes the equipment and tooling used in the process. It also analyzes the influence of process parameters on shot peen forming and illustrates possible shapes and contours, which are producible by shot peen forming. The article concludes with a table that presents typical peen forming applications in the aircraft and aerospace industries.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005528
EISBN: 978-1-62708-197-9
..., along with sensitivity studies with respect to process and tool parameters. burr edge-shearing finite-element methods microstructural characterization shearing defects slitting SHEARING PROCESSES are among those most frequently used in sheet metal manufacturing and forming operations...
Abstract
This article discusses a set of experimental and computational studies aimed at understanding the effect of various processing parameters on the extent of burr and other defect formation during sheet edge-shearing and slitting processes. It describes the development of experimentally validated finite-element models for analyzing the classes of shearing processes. The article also discusses the use of microstructural characterization with stereology to render three-dimensional volumetric parameters. It concludes with information on the numerical simulation of an edge-shearing process, along with sensitivity studies with respect to process and tool parameters.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004028
EISBN: 978-1-62708-185-6
... of complex forming operations, through the use of the finite element method, are also presented. axial deformation body centered-cubic sheets deformation texture finite element method forming plastic deformation rolled face-centered-cubic zirconium METALS are polycrystalline aggregates...
Abstract
This article outlines several polycrystal formulations commonly applied for the simulation of plastic deformation and the prediction of deformation texture. It discusses the crystals of cubic and hexagonal symmetry that constitute the majority of the metallic aggregates used in technological applications. The article defines the basic kinematic tensors, reports their relations, and presents expressions for calculating the change in crystallographic orientation associated with plastic deformation. It surveys some of the polycrystal models in terms of the relative strength of the homogeneous effective medium (HEM). The article analyzes the anisotropy predictions of rolled face-centered-cubic and body centered-cubic sheets and presents simulations of the axial deformation of hexagonal-close-packed zirconium. The applications of polycrystal constitutive models to the simulation of complex forming operations, through the use of the finite element method, are also presented.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006425
EISBN: 978-1-62708-192-4
...-update scheme (GUS) has been developed at the Institute of Metal Forming and Casting. In order to describe the change of tool geometry GUS uses an iterative scheme, as shown in Fig. 12 ( Ref 26 ). Predicting wear with computer simulations can be used to help extend the life cycle of a tool in sheet...
Abstract
This article discusses the tribology of three main sheet forming processes: deep drawing, bending, and shearing. For each process, the basic principle of the forming process is briefly explained. Tribological phenomena observed in each process, such as wear and galling, are presented. Common methods of using lubricants and coatings in sheet forming processes are also described.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
... extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation. accuracy incremental forging metal forming metal products metal working...
Abstract
Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling and surface-rolling machines. The article outlines the significant characteristics of pressing-type machines: load and energy characteristics, time-related characteristics, and accuracy characteristics. It summarizes different specialized processes such as advanced roll-forming methods, equal-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
...-drawing test method, developed by Hirasaka and Nishimura ( Ref 96 ), to directly simulate sheet metal forming processes and loads with geometrically simple tools. Another option for studying the galling resistance of tool steels for cold forming was presented by van der Heide et al. ( Ref 97 ) and used...
Abstract
Friction and wear are important when considering the operation and efficiency of components and mechanical systems. Among the different types and mechanisms of wear, adhesive wear is very serious. Adhesion results in a high coefficient of friction as well as in serious damage to the contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure modes of adhesive wear including scoring, scuffing, seizure, and galling, and describes the processes involved in classic laboratory-type and standardized tests for the evaluation of adhesive wear. It includes information on standardized galling tests, twist compression, slider-on-flat-surface, load-scanning, and scratch tests. After a discussion on gear scuffing, information on the material-dependent adhesive wear and factors preventing adhesive wear is provided.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005431
EISBN: 978-1-62708-196-2
... the responses of structures, components, processes, or systems. An emphasis is placed on continuum mechanics as it relates to metal deformation or forming. The mathematical principles of solving differentials then are outlined (only in broad terms) as a way to illustrate why FEMs play such an important role...
Abstract
Several methods are developed for the numerical solution of partial differential equations, namely, meshed-solution methods such as the finite-element method (FEM), finite-difference method, and boundary-element method; and numerical algorithms consisting of so-called meshed-solution methods. This article introduces the methods of so-called meshed solutions, with an emphasis on the FEM. It presents some basic differential equations that are used to model the responses of structures, components, processes, or systems with emphasis on continuum mechanics. The article provides an outline on the mathematical principles of solving differential equations. It also reviews linear structural problems to illustrate the concept of the FEMs.