1-20 of 329

Search Results for shaped tube electrolytic machining

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002164
EISBN: 978-1-62708-188-7
... Abstract Shaped tube electrolytic machining (STEM) is a modified electrochemical machining (ECM) process that uses an acid electrolyte so that the removed metal goes into the solution instead of forming a precipitate. This article lists some specific machining applications of the STEM process...
Image
Published: 01 January 1989
Fig. 1 Schematic of the shaped tube electrolytic machining process More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002163
EISBN: 978-1-62708-188-7
... ELECTROSTREAM DRILLING (ES) AND CAPILLARY DRILLING (CD) are electrochemical machining processes that were developed by General Electric and Rolls Royce, respectively, for drilling holes that are too deep to be drilled by electrical discharge machining and too small to be drilled by shaped tube electrolytic...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003597
EISBN: 978-1-62708-182-5
... rotor and stator assembly for cooling, crankshaft oil holes, holes in fuel- injection nozzles, and holes in spinnerets. The principle of anodic dissolution has been applied for making such small-diameter deep holes in hard-to-machine materials. This process is also known as shaped-tube electrolytic...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002155
EISBN: 978-1-62708-188-7
... grinding (ECDG) Electrostream drilling (ES) Capillary drilling (CD) Shaped tube electrolytic machining (STEM) Electrical discharge machining (EDM) Electrical discharge wire cutting (EDWC) Electrical discharge grinding (EDG) Electron beam machining (EBM) Laser beam machining (LBM) Thermal energy method...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003186
EISBN: 978-1-62708-199-3
... waterjet machining (AWJM) Ultrasonic machining (USM) Electrical Electrochemical machining (ECM) Electrochemical grinding (ECG) Electrochemical discharge grinding (ECDG) Electrostream drilling (ES) Capillary drilling (CD) Shaped tube electrolytic machining (STEM) Thermal...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003596
EISBN: 978-1-62708-182-5
... the IEG. It dissipates heat and limits the concentration of ions at the electrode surface to give higher machining rates. The electrolyte conductivity, the voltage across IEG, the gap itself, and tool shape are controlled to define the final anode (workpiece) profile. The electrolyte electrical...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002160
EISBN: 978-1-62708-188-7
... Abstract Electrochemical machining (ECM) is the controlled removal of metal by anodic dissolution in an electrolytic cell in which the workpiece is the anode and the tool is the cathode. This article begins with a description of the ECM system and then discusses the primary variables...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001057
EISBN: 978-1-62708-162-7
... such as extruded shapes, forgings, impacts, castings, stampings, powder metallurgy parts, machined parts, and metal-matrix composites. The article also reviews important fabrication characteristics in the machining, forming, forging, and joining of aluminum alloys. It concludes with a description of the major...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003194
EISBN: 978-1-62708-199-3
... the gap. Equipment Machine tool must be rigid to withstand high fluid separating forces; must protect mechanical and electrical systems for corrosive electrolytes, and have provisions for venting of work areas; dc power source; electrolyte system, including pumps, filters, storage tanks, and heat...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003404
EISBN: 978-1-62708-195-5
... Abstract This article describes the factors to be considered while performing electroforming process. The factors include the shape and size of the mold, expected durability of the mold, required delivery time, and manufacture and cost of the necessary mandrel. The article discusses mandrel...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003125
EISBN: 978-1-62708-199-3
... are those designed for specific applications and include extruded shapes, forgings, and impacts. Typical examples of wrought products include plate or sheet, which is subsequently formed or machined into products such as aircraft or building components, household foil, and extruded shapes such as storm...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005288
EISBN: 978-1-62708-187-0
... Outokumpu upcasting method Rautomead upwards vertical casting pressure upcasting COPPER ALLOY PRODUCTS such as strip, billet, rod, or tube are continuous cast, defined as the continuous solidification and withdrawal of product from an open-ended shaping mold. Methods include both vertical...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001263
EISBN: 978-1-62708-170-2
... that are difficult, if not impossible, to duplicate in wrought counterparts. Some shapes, particularly those with complex internal surfaces or passages, cannot be made by any other method without excessive machining costs and scrap losses. These shapes are often easily electroformed. Examples of such hardware...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002161
EISBN: 978-1-62708-188-7
... internal grinding surface grinding ELECTROCHEMICAL GRINDING (ECG), also called electrolytic grinding, is similar to electrochemical machining (ECM), except that the cathode is an electrically conductive abrasive grinding wheel instead of a tool shaped like the contour to be machined. Electrochemical...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006081
EISBN: 978-1-62708-175-7
... iron powders that offer a similar high level of purity. However, carbonyl iron powders contain larger amounts of carbon and nitrogen. They offer relatively smaller specific surface areas due to their spherical shape. They are typically higher in cost compared with electrolytic iron powder ( Ref 14...
Book Chapter

Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003786
EISBN: 978-1-62708-177-1
... of specimens that are too small, fragile, or awkwardly shaped Containment of sharp edges or corners that may damage the papers and cloths used in polishing equipment or pose a hazard during handling Convenient and uniform configuration for either manual or automatic grinding and polishing machines...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006702
EISBN: 978-1-62708-210-5
... max Zn 0.25 max Other (each) 0.05 max Other (total) 0.15 max Al bal Alloy 5454 is available as sheet, plate, tube, extruded or rolled shapes, and rod and bar. Mill product specifications are listed in Table 2 . Equivalent alloy designations include: UNS: A95454 ISO...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006760
EISBN: 978-1-62708-295-2
... pipe. (b) Erosion pit with no corrosion product visible. (c) Erosion on the outside diameter of austenitic stainless steel heat-exchanger tube. (d) Section through same tube shown in (c). (e) Section through same tube shown in (c) and etched with electrolytic oxalic acid Stress-Corrosion Cracking...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006591
EISBN: 978-1-62708-210-5
... is diameter of reduced section of tensile test specimen. Where a range of values appears in this column, the specified minimum elongation varies with thickness of the mill product. Available forms include bar, rod, sheet, plate, wire, tube, pipe, and shapes. Various mill product specifications...