1-20 of 277 Search Results for

shape memory materials

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003160
EISBN: 978-1-62708-199-3
...Abstract Abstract The term shape memory alloys (SMAs) refers to the group of metallic materials that demonstrate the ability to return to some previously defined shape or size when subjected to the appropriate thermal procedure. Materials that exhibit shape memory only upon heating are referred...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006579
EISBN: 978-1-62708-290-7
... handling. binder jetting copper alloys copper-base shape memory alloys directed-energy deposition powder bed fusion tensile properties ultrasonic additive manufacturing COPPER AND COPPER ALLOYS are employed in a wide range of high-performance industrial applications where materials...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
... failure. It also covers failures of shape memory alloy springs and failures caused by corrosion and operating conditions. corrosion failure analysis fatigue failures material defects mechanical springs shape memory alloys MECHANICAL SPRINGS are used in mechanical components to exert force...
Book Chapter

Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003736
EISBN: 978-1-62708-177-1
... the stages of the tempering process involved in ferrous martensite. The article also describes the formation of the martensite structure in nonferrous systems. It concludes with a discussion on shape memory alloys. ceramics martensite shape memory materials tempering MARTENSITE is a metastable...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001100
EISBN: 978-1-62708-162-7
... memory alloys differential scanning calorimeter Nitinol shape memory alloys thermomechanical behavior THE TERM SHAPE MEMORY ALLOYS (SMA) is applied to that group of metallic materials that demonstrate the ability to return to some previously defined shape or size when subjected...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005658
EISBN: 978-1-62708-198-6
...Abstract Abstract This article focuses on the specific aspects of nitinol that are of interest to medical device designers. It describes the physical metallurgy, physical properties, and tensile properties of the nitinol. The article discusses the factors influencing superelastic shape memory...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002192
EISBN: 978-1-62708-188-7
..., and toxic properties Shape memory is the tendency of the material to return to its original shape after a temperature change. Shape memory is more prevalent in alloyed than in unalloyed uranium ( Ref 1 ). A nonisotropic coefficient of thermal expansion causes the material to distort under...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005435
EISBN: 978-1-62708-196-2
... is recovered by heating to the austenite phase, in accordance with the shape memory effect. The orientation distribution reverts to its ng state because the grains rotate back when the load is removed. The aforementioned mechanical behavior of the polycrystal in Fig. 4 is compared to the corresponding...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006261
EISBN: 978-1-62708-169-6
... alloys, special-purpose alloys such as nitinol shape memory alloys, low-expansion alloys, electrical-resistance alloys and soft magnetic alloys. Finally, the article focuses on heat treatment modeling for selecting the appropriate heat treatment process. aging annealing corrosion-resistant nickel...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003757
EISBN: 978-1-62708-177-1
...Abstract Abstract This article reviews the main theoretical and practical aspects of sequence normally followed in digital image-acquisition, processing, analysis, and output for material characterization. It discusses the main methods of digital imaging, image processing, and analysis...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003049
EISBN: 978-1-62708-200-6
... are formed into shapes using many different techniques. A general sequence of unit operations would include raw material preparation, batch preparation, forming, drying, prefire operations (glazing, decorating, etc.), firing, and postfire operations (glazing, decorating, machining, and/or cleaning). Forming...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005293
EISBN: 978-1-62708-187-0
.... , The Influence of Oxide Inclusions on the Post-Hip Fatigue Life of Two Al-Si-Mg Castings , Proceedings: Shape Casting: The Second International Symposium , Crepeau P.N. , Tiryakioglu M. , and Campbell J. , Ed., The Minerals , Metals and Materials Society , 2007 31. Hebeisen J.C...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001080
EISBN: 978-1-62708-162-7
... eliminates the galvanic corrosion that can occur when titanium implants come in contact with other implant materials such as stainless steels and cobalt-base alloys ( Ref 11 ). Another biomedical application exploits the shape-memory effect seen in nickel-titanium alloys to create compressive stresses...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002354
EISBN: 978-1-62708-193-1
.... Memory of Prior Deformation A phenomenon that might seem astonishing at first, but that provides some fundamental insights on important microstructural processes, is the “memory” of materials of their prior load history. If, as schematically shown in Fig. 6(a) , a material is deformed in tension...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003776
EISBN: 978-1-62708-177-1
... of example micrographs, comparing and contrasting the microstructural features of gold, platinum, iridium, palladium, and ruthenium-base alloys. It examines pure gold, intermetallic gold compounds, gold and platinum jewelry alloys, platinum-containing shape memory alloys, and alloys consisting of platinum...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005876
EISBN: 978-1-62708-167-2
..., homogeneous, and isotropic material properties. In the early 1960s, the finite-difference method (FDM) started to be applied to solve eddy current problems for designing induction heating systems. Only some years later was the integral method based on the equivalence with mutually coupled circuits also...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005233
EISBN: 978-1-62708-187-0
... and memory accesses needed to implement a given solution algorithm compared to the indirect addressing required with unstructured meshes. The relative advantages of hexahedral versus tetrahedral element shapes remain subjects of debate in the CFD community. Tetrahedra have an advantage in grid generation...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006042
EISBN: 978-1-62708-175-7
... sensitive to residual porosity, and HIP PM materials typically have excellent fatigue resistance. Current HIP PM technology enables the production of both simple and complex net and near-net shapes. Thus, the HIP PM process route offers an alternative to casting and forging in metal parts production...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005538
EISBN: 978-1-62708-197-9
... to the economics of manufacturing near-net or net components by means of powder material compaction, sintering, and shaping. The articles “Modeling of Powder Metallurgy Processes,” “Modeling and Simulation of Press and Sinter Powder Metallurgy,” “Modeling of Hot Isostatic Pressing,” and “Modeling and Simulation...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006684
EISBN: 978-1-62708-213-6
... (b). Dendrites are visible using DIC but not in bright field, while intermetallic particles between dendrites are easier to see in bright field. Fig. 37 Martensite in nitinol (Ni-50at.%Ti) shape memory alloy revealed by etching using equal parts HNO 3 , acetic acid, and hydrofluoric acid...