Skip Nav Destination
Close Modal
Search Results for
service life anomalies
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 121 Search Results for
service life anomalies
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
..., design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input...
Abstract
This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input and information, people interviews, laboratory investigations, stress analysis, and fracture mechanics analysis. The article concludes with information on the categories of failure and failure prevention.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006870
EISBN: 978-1-62708-395-9
... Abstract This article examines the concept of fractography as applied to elastomeric rubbery materials. It considers four general categories of physical root failure causes: design defects, material defects, manufacturing defects, and service life anomalies. Examples of real-world failures...
Abstract
This article examines the concept of fractography as applied to elastomeric rubbery materials. It considers four general categories of physical root failure causes: design defects, material defects, manufacturing defects, and service life anomalies. Examples of real-world failures of rubber articles, with numerous accompanying figures, are representative of the four root failure categories.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... operates in service. The service life of a product includes its operation, maintenance, inspection, repair, and modification. Failures due to anomalies in any one of these aspects of service life are unique from those created during the design, procurement of materials, and manufacture of products...
Abstract
This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different levels, followed by a discussion on the role of failure analysis and the appreciation of quality assurance and user expectations. Systematic analysis of equipment failures reveals physical root causes that fall into one of four fundamental categories: design, manufacturing/installation, service, and material, which are discussed in the following sections along with examples. The tools available for failure analysis are then covered. Further, the article describes the categories of mode of failure: distortion or undesired deformation, fracture, corrosion, and wear. It provides information on the processes involved in RCA and the charting methods that may be useful in RCA and ends with a description of various factors associated with failure prevention.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004215
EISBN: 978-1-62708-184-9
.... If inspection requirements are considered early in the design stage, much can be done to aid future inspection efforts. Codes and standards generally call for access to be provided to allow for the component to be inspected periodically during service life, but this generally amounts to little more than...
Abstract
This article focuses on the aspects associated with inspection related to pressure vessels and pipework. These aspects include inspection policy, inspection planning and procedures, inspection strategy, inspection methodology, preparation for inspection, invasive inspection, internal visual inspection, and non-invasive inspection. Inspection execution, risk-based inspection, competence assurance of inspection personnel, inspection coverage, inspection periodicity, inspection anomaly criteria, assessment of fitness, and reporting requirements, are also discussed. The article addresses the data acquisition, reporting and trending, and review and audit for the inspection. It reviews inspection techniques, including visual inspection, ultrasonic inspection, and radiographic inspection.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment. elevated-temperature life assessment fabrication failure analysis fatigue life assessment fitness-for-service life assessment material defects nondestructive inspection stress...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006336
EISBN: 978-1-62708-179-5
... of Nondestructive Inspection Mordfin ( Ref 1 ) offered three axioms to describe the relationship between nondestructive evaluation and material performance: All parts contain anomalies. Anomalies in a part do not necessarily make the part unfit for service. The detectability of an anomaly increases...
Abstract
Nondestructive inspection (NDI) methods for cast iron are used to ensure that the parts supplied perform as required by the purchaser. This article focuses on the principal nondestructive methods used to inspect for anomalies in cast irons and to determine if the volume, shape, size, or number of these anomalies exceeds the maximum allowed by the purchaser. The nondestructive methods include visual inspection, dimensional inspection, liquid penetrant inspection, magnetic-particle inspection, eddy-current inspection, radiographic inspection, ultrasonic inspection, resonant testing, and leak testing. The technique, strengths, and weaknesses of each of the nondestructive methods are also discussed.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives...
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003445
EISBN: 978-1-62708-195-5
... to loads high in the spectrum, which produce the most fatigue damage and shortest test life. Both the high and low loads in the spectrum can damage a metal structure. However, the high-spectrum loads that damage composites produce a generally unconservative test life (longer than the in-service life...
Abstract
This article describes the role of the full-scale testing in assessing composite structural systems of aircraft and qualifying them for in-service use. The typical full-scale tests include static, durability, and damage tolerance. The article discusses the parameters to be considered when developing the basic requirements for the static test. These parameters consist of material considerations, moisture and temperature effects, structure size, load application alternatives, instrumentation requirements, test procedure considerations, ultimate load requirements, and test results correlation. The basic requirements common for durability and damage tolerance tests, including environmental effects and inspection requirements, are also discussed.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006965
EISBN: 978-1-62708-439-0
... of truth. The ERP systems are designed around a single defined data structure (model) that typically has a common underlying database. Product Life-Cycle Management Product life-cycle management (PLM) software manages all the information associated with every step of a product or service life cycle...
Abstract
Additive manufacturing (AM) creates parts layer by layer directly from three-dimensional computer-aided design data. This article discusses systematic ways to address the challenges in AM data integration by exploring various AM-specific data-integration scenarios that can improve the current AM ecosystem. Representative AM data sources are also described. A reference framework that captures the heterogenous AM data sources and existing data-integration mechanisms are used. General data-integration practices—based on existing manufacturing data and lab information system integration experiences—are recommended to automate AM data flow, operations, and development. Lastly, the article discusses the seven steps in the big-data-integration workflow.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003289
EISBN: 978-1-62708-176-4
... reviewed. creep-rupture properties creep-rupture life parametric modelling isostress testing accelerated creep testing USE OF CREEP-RUPTURE PROPERTIES to determine allowable stresses for service parts has evolved with experience, although guidelines for use differ among specifications...
Abstract
This article discusses the methods for assessing creep-rupture properties, particularly, nonclassical creep behavior. The determination of creep-rupture behavior under the conditions of intended service requires extrapolation and/or interpolation of raw data. The article describes the various techniques employed for data handling of most materials and applications of engineering interest. These techniques include graphical methods, methods using time-temperature parameters, and methods used for estimations when data are sparse or hard to obtain. The article reviews the estimation of required creep-rupture properties based on insufficient data. Methods for evaluation of remaining creep-rupture life, including parametric modeling, isostress testing, accelerated creep testing, evaluation by the Monkman-Grant coordinates, and the Materials Properties Council (MPC) Omega method, are also reviewed.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002392
EISBN: 978-1-62708-193-1
..., operators find it more economical to refurbish and maintain their existing aircraft than to purchase new ones. The resulting increase in the number of aircraft that are being operated beyond their expected service life raises important safety questions regarding the structural integrity of these aircraft...
Abstract
This article describes two analysis methods that are used to determine the life of aircrafts: fatigue life and fracture mechanics methods. The life limiting factors that control the durability of the aircraft are also discussed. The article provides an overview of the various approaches to corrosion identification and prevention. These include safe-life, fail-safe, and damage tolerance approaches. The article discusses their application to the process of extending the life of aircraft structural components.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006400
EISBN: 978-1-62708-192-4
... increased productivity), extended machine life, and lower operating costs. For example, because corrosion can lead to unexpected failures that can be costly in terms of repair expenses, environmental damage, and potential harm to humans, CM is indispensable in avoiding these consequences. Generally...
Abstract
This article introduces the concept of condition monitoring (CM) and summarizes various techniques used for CM across the industrial sectors. The techniques include visual inspection, performance monitoring, vibration condition monitoring, vibration condition monitoring, lubricant oil analysis, acoustic emission testing, temperature monitoring, motor current signature analysis, and ultrasound emission. The article describes the evolution of condition-based maintenance in CM. It also describes the basics of integrated vehicle health management, a capability that enables a number of maintenance philosophies. The article concludes with a discussion on various condition monitoring in industrial sectors, including condition-monitoring techniques in nuclear power plants, road condition monitoring, and condition monitoring in wind turbines.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003514
EISBN: 978-1-62708-180-1
... independent or time invariant. For the simple strength ( R )-stress ( S ) case, S could represent the largest stress during the service life and R the strength. The distribution (mean, standard deviation, and distribution family) of each is assumed to be constant, that is, not a function of time...
Abstract
This article describes the historical background, uncertainties in structural parameters, classifications, and application areas of probabilistic analysis. It provides a discussion on the basic definition of random variables, some common distribution functions used in engineering, selection of a probability distribution, the failure model definition, and a definition of the probability of failure. The article also explains the solution techniques for special cases and general solution techniques, such as first-second-order reliability methods, the advanced mean value method, the response surface method, and Monte Carlo sampling. A brief introduction to importance sampling, time-variant reliability, system reliability, and risk analysis and target reliabilities is also provided. The article examines the various application problems for which probabilistic analysis is an essential element. Examples of the use of probabilistic analysis are presented. The article concludes with an overview of some of the commercially available software programs for performing probabilistic analysis.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003811
EISBN: 978-1-62708-183-2
... Continuous or intermittent operation Fluid velocity Each of these can have a significant effect on the service life of cast equipment, and such detailed information must be provided to make the appropriate materials selection. Many rapid failures are traceable to these details being overlooked—often...
Abstract
This article, primarily focusing on atmospheric corrosion of carbon and low-alloy steels, describes the factors that must be considered by alloy casting users in material selection. It presents compositions of cast steels tested in atmospheric corrosion in a tabular form. The article graphically presents the results of a research program that compared the corrosion resistance of nine cast steels in marine and industrial atmospheres. It provides a comparison of corrosion rates of cast steels, malleable cast iron, and wrought steel after three years of exposure in two atmospheres. Conclusions drawn from these tests are also presented.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
... shafts are more an integral part of a machine and transmit motion directly, such as in crankshafts. Complex machine shafts can convert reciprocating motion into rotational motion and vice versa. Shafts operate under a broad range of service conditions, including dust-laden or corrosive atmospheres...
Abstract
In addition to failures in shafts, this article discusses failures in connecting rods, which translate rotary motion to linear motion (and conversely), and in piston rods, which translate the action of fluid power to linear motion. It begins by discussing the origins of fracture. Next, the article describes the background information about the shaft used for examination. Then, it focuses on various failures in shafts, namely bending fatigue, torsional fatigue, axial fatigue, contact fatigue, wear, brittle fracture, and ductile fracture. Further, the article discusses the effects of distortion and corrosion on shafts. Finally, it discusses the types of stress raisers and the influence of changes in shaft diameter.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006814
EISBN: 978-1-62708-329-4
.... Edwards, in the context of inspection, said ( Ref 23 ): “Any discussion of nondestructive examination (NDE) requires a clear definition of the term defect . A defect is a discontinuity that creates a substantial risk of failure in a component or structure during its service life.” This definition...
Abstract
Welded connections are a common location for failures for many reasons, as explained in this article. This article looks at such failures from a holistic perspective. It discusses the interaction of manufacturing-related cracking and service failures and primarily deals with failures that occur in service due to stresses caused by externally applied loads. The purpose of this article is to enable a failure analyst to identify the causative factors that lead to welded connection failure and to identify the corrective actions needed to overcome such failures in the future. Additionally, the reader will learn from the mistakes of others and use principles that will avoid the occurrence of similar failures in the future. The topics covered include failure analysis fundamentals, welded connections failure analysis, welded connections and discontinuities, and fatigue. In addition, several case studies that demonstrate how a holistic approach to failure analysis is necessary are presented.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006438
EISBN: 978-1-62708-190-0
... of the component to perform its design function. The most common application is detection of flaws caused either by manufacturing anomalies, service or environmental stresses, or natural material aging. More generally, applications may include estimation of mechanical and material properties, stress/strain...
Abstract
This article provides a discussion on general nondestructive evaluation (NDE) science and considerations for specific technique selection. It explains the basic concept of flaw detection and evaluation and probability of detection. The article provides an overview of NDE methods with their applications, limitations, and advantages. It includes details on NDE codes, calibration standards, inspection frequency, guidance on how to perform inspections, applicability, and mandatory and nonmandatory practice. The article also provides tips on where to focus inspections in order to align with the likely areas of damage or degradation and a number of other aspects of inspection.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... of the two processes are reversed. Design is the process of synthesizing and analyzing service conditions into the reality of an actual or hypothetical component. In contrast, failure analysis may be visualized as the dissection of an actual component in order to synthesize and understand the significance...
Abstract
Materials selection is closely related to the objectives of failure analysis and prevention. This article briefly reviews the general aspects of materials selection as a concern in both proactive failure prevention during design and as a possible root cause of failed parts. Coverage is more conceptual, with general discussions on the following topics: design and failure prevention, materials selection in design, materials selection for failure prevention, and materials selection and failure analysis. Because materials selection is just one part of the design process, the overall concept of design is discussed. The article also describes the role of the materials engineer in the design and materials selection process. It provides information on the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003695
EISBN: 978-1-62708-182-5
..., rubber linings have a service life expectancy of 25 to 30 years. Fig. 1 A large, rubber-lined tank that requires on-site installation. Courtesy of Blair Rubber Company, Akron, OH Commercial Lining Products Rubber lining products are manufactured in a broad range of compositions...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... are essential to proper service and cannot be subordinated, whereas secondary requirements are those where judicious compromises can be made. For example, life-cycle considerations (such as recycling or environmental impact) may be a primary or secondary criterion, depending on the product objectives...
Abstract
Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed parts. It discusses the overall concept of design and describes the role of the materials engineer in the design and materials selection process. The article highlights the significance of materials selection in both the prevention and analysis of failures.
1