Skip Nav Destination
Close Modal
By
Carolyn Carradero Santiago, Eric MacDonald, Jose Coronel, Dominic Kelly, Ryan Wicker ...
Search Results for
semiconductor memory
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 67 Search Results for
semiconductor memory
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 31 October 2011
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002475
EISBN: 978-1-62708-194-8
... and contributed to the volumetric improvements beyond those that would have been possible with just the magnetic core and semiconductor chip technologies which are basically planar, two dimensional. Fig. 4 Memory density trends. Source: Ref 5 At the same time, the trend is often toward increasing...
Abstract
This article presents an overview of the electric and magnetic parameters and discusses the significance of these parameters for electronic applications. It describes the components of analog and digital electronic circuits. The article reviews the augmenting technologies: magnetic and special technologies such as electrooptical.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003062
EISBN: 978-1-62708-200-6
... devices. Also undergoing rapid development are diamond insulating films as well as ferroelectric thin films for computer memory. BaTiO 3 -based compounds, which exhibit high dielectric constants and are formulated to satisfy specified capacitive and temperature characteristics (NPO, Z5U, X7R, etc...
Abstract
Ceramic materials serve important insulative, capacitive, conductive, resistive, sensor, electrooptic, and magnetic functions in a wide variety of electrical and electronic circuitry. This article focuses on various applications of advanced ceramics in both electric power and electronics industry, namely, dielectric, piezoelectric, ferroelectric, sensing, magnetic and superconducting devices.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001091
EISBN: 978-1-62708-162-7
... in defense applications, because they can send information about five times faster, withstand more radiation, and operate at higher temperatures than comparable silicon-base integrated circuits. Optoelectronic Devices An LED is a semiconductor that emits light when an electric current is passed...
Abstract
Gallium-base components can be found in a variety of products ranging from compact disk players to advanced military electronic warfare systems, owing to the factor that it can emit light, has a greater resistance to radiation and operates at faster speeds and higher temperatures. This article discusses the uses of gallium in optoelectronic devices and integrated circuits and applications of gallium. The article discusses the properties and grades of gallium arsenide and also provides information on resources of gallium. The article talks about the recovery techniques, including recovery from bauxite, zinc ore and secondary recovery process and purification. The article briefly describes the fabrication process of gallium arsenide crystals. Furthermore, the article gives a short note on world supply and demand of gallium and concludes with research and development on gallium arsenide integrated circuits.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001284
EISBN: 978-1-62708-170-2
... Abstract This article describes the vapor-phase growth techniques applied to the epitaxial deposition of semiconductor films and discusses the fundamental processes involved in metal-organic chemical vapor deposition (MOCVD). It reviews the thermodynamics that determine the driving force behind...
Abstract
This article describes the vapor-phase growth techniques applied to the epitaxial deposition of semiconductor films and discusses the fundamental processes involved in metal-organic chemical vapor deposition (MOCVD). It reviews the thermodynamics that determine the driving force behind the overall growth process and the kinetics that define the rates at which the various processes occur. The article provides information on the reactor systems and hardware, MOCVD starting materials, engineering considerations that optimize growth, and the growth parameters for a variety of Group III-V, II-VI, and IV semiconductors.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003049
EISBN: 978-1-62708-200-6
... or reactive sputtering techniques and nontoxic glasses. Considerable attention was directed to glasses of the chalcogenide family because of their two-state, or switching, behavior. Initial expectations were for the development of computer memory systems based on this unusual electrical behavior. However...
Abstract
This article provides an overview of the types, properties, and applications of traditional and advanced ceramics and glasses. Principal product areas for traditional ceramics include whitewares, glazes, porcelain enamels, structural clay products, cements, and refractories. Advanced ceramics include electronic ceramics, optical ceramics, magnetic ceramics, and structural ceramics.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001090
EISBN: 978-1-62708-162-7
... properties germanium germanium applications germanium compounds germanium specifications optical properties semiconductor thermal properties toxicology GERMANIUM (Ge) is a semiconducting metalloid element found in Group IV A and period 4 of the periodic table. Although it looks like a metal...
Abstract
Germanium is a semiconducting metalloid element found in Group IV A. Germanium is used in the field of electronics, infrared optics, and in the fields of gamma ray spectroscopy, catalysis, and fiber optics. This article discusses the sources, manufacturing, and processing of germanium, and focuses on the chemical properties of various germanium compounds, including germanium halides, germanates, germanides, germanes, inorganic, and organogermanium compounds. It also tabulates the physical, thermal, electronic, and optical properties of germanium, and explains the economical aspects and specifications of germanium. The article describes the analytical and test methods of germanium, including gravimetric method, titrimetric method, and spectral method. It provides a short note on toxicology, and concludes with the uses of germanium in different fields.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005736
EISBN: 978-1-62708-171-9
... and their cost advantage also have attracted the attention of the thin-film (PVD and CVD) community toward thermal spray technology. In recent years, thermal spray processing increasingly has been used to support thin-film processes involved in the fabrication of semiconductor electronics and other related...
Abstract
Thermal spray processes involve complete or partial melting of a feedstock material in a high-temperature flame, and propelling and depositing the material as a coating on a substrate. This article describes the properties of sprayed electronic materials, including dielectrics, conductors, and resistors, and discusses their implications and associated limitations for device applications and potential remedial measures. The article presents specific examples of electrical/electronic device applications, including electromagnetic interference/radio-frequency interference shielding, planar microwave devices, waveguide devices, sensing devices, solid oxide fuel cells, heating elements, electrodes for capacitors and other electrochemical devices.
Book Chapter
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006558
EISBN: 978-1-62708-290-7
... generally been relegated to flat, planar surfaces. Aerosol jetting and microdispensing have been the dominant processes used to selectively deposit inks onto a variety of surfaces. These inks can have functions including behaving as conductors, dielectrics, or even semiconductors ( Ref 2 , 3...
Abstract
This article provides an overview of the implementation of wire embedding with ultrasonic energy and thermal embedding for polymer additive manufacturing, discussing the applications and advantages of the technique. The mechanical and electrical performance of the embedded wires is compared with that of other conductive ink processes in terms of electrical conductivity and mechanical strength.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003250
EISBN: 978-1-62708-199-3
..., the emitted x-ray beam is analyzed electronically, photon by photon ( Fig. 5 ). The x-ray beam is directly into a semiconductor device (a lithium-drifted silicon crystal). As each x-ray photon enters the detector crystal, it creates numerous electron-hole pairs as it expends its energy interacting...
Abstract
The overall chemical composition of metals and alloys is most commonly determined by X-ray fluorescence (XRF) and optical emission spectroscopy (OES), and combustion and inert gas fusion analysis. This article provides information on the capabilities, uses, detection threshold and precision methods, and sample requirements. The amount of material that needs to be sampled, operating principles, and limitations of the stated methods are also discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003153
EISBN: 978-1-62708-199-3
... and for inductors in filters, and microwave ferrites for microwave devices. In recent years, due to increasing use of semiconductors for computer memories, square-loop ferrites have decreased in importance. Microstructure and composition have much stronger influences on the magnetic properties of ferrites than...
Abstract
This article discusses the ferromagnetic properties of soft magnetic materials, explaining the effects of impurities, alloying elements, heat treatment, grain size, and grain orientation on soft magnetic materials. It describes the types of soft magnetic materials, which include high-purity iron, low-carbon irons, silicon (electrical) steels, nickel-iron alloys, iron-cobalt alloys, ferritic stainless steels, amorphous metals, and ferrites (ceramics). Finally, the article provides a short note on alloys for magnetic temperature compensation.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006439
EISBN: 978-1-62708-190-0
... a camera with an image sensor such as a charge-coupled device (CCD) or complementary metal oxide semiconductor (CMOS) image sensor, receives light reflected off an object of interest through its lens and converts this light into a digital signal. A computer, embedded-system, or microcomputer further...
Abstract
Machine vision, also referred to as computer vision or intelligent vision, is a means of simulating the image recognition and analysis capabilities of the human eye and brain system with digital techniques. The machine vision functionality is extremely useful in inspection, supervision, and quality control applications. This article presents a variety of machine vision functions for different purposes and provides a comparison of machine and human vision capabilities in a table. It discusses the processes of a machine vision system: image acquisition, image preprocessing, image analysis, and image interpretation. The article provides information on the uses of machine vision systems in three categories of manufacturing applications: visual inspection, identification of parts, and guidance and control applications.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003757
EISBN: 978-1-62708-177-1
... is replacing photographic film in laboratory use. Digitized images are efficiently stored in computer memory and can be processed and analyzed to extract quantitative information. Printers are approaching film quality and allow low-cost image output. The move from traditional photographic film imaging...
Abstract
This article reviews the main theoretical and practical aspects of sequence normally followed in digital image-acquisition, processing, analysis, and output for material characterization. It discusses the main methods of digital imaging, image processing, and analysis, as applied to microscopy of materials. The article describes the basic concepts of sampling and resolution and quantization of light microscopy, scanning electron microscopy, and transmission electron microscopy. It discusses the acquisition of a digital image that accurately represents the sample under observation and output of the image to a printer. The methods used to enhance the digital image and to extract quantitative information are also described. Different types of image segmentation, namely, adaptive segmentation and contour-based segmentation, are reviewed. The article also presents case studies on the application of image processing and analysis to materials characterization.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005544
EISBN: 978-1-62708-197-9
... interactively in three dimensions or programmatically using ParaView's batch processing capabilities. The software was developed to analyze extremely large datasets using distributed memory computing resources. It can be run on supercomputers to analyze datasets of terascale as well as on laptops for smaller...
Abstract
This article demonstrates the depth and breadth of commercial and third-party software packages available to simulate metals processes. It provides a representation of the spectrum of applications from simulation of atomic-level effects to manufacturing optimization. The article tabulates the software name, function or process applications, vendor or developer, and website information.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006668
EISBN: 978-1-62708-213-6
... arrows). STEM, scanning transmission electron microscopy; DF, dark field; BF, bright field Another common method for BE detection in this geometry is using semiconductor-based solid-state detectors, which are often segmented so the BE signal to different regions of the detector can be isolated...
Abstract
This article provides detailed information on the instrumentation and principles of the scanning electron microscope (SEM). It begins with a description of the primary components of a conventional SEM instrument. This is followed by a discussion on the advantages and disadvantages of the SEM compared with other common microscopy and microanalysis techniques. The following sections cover the critical issues regarding sample preparation, the physical principles regarding electron beam-sample interaction, and the mechanisms for many types of image contrast. The article also presents the details of SEM-based techniques and specialized SEM instruments. It ends with example applications of various SEM modes.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003681
EISBN: 978-1-62708-182-5
... sections. Ion Implantation Surface modification by ion implantation is a technique that was derived from the semiconductor industry. Specimens for corrosion research were initially prepared by using high-energy research instrumentation or commercial semiconductor implanters. Equipment for surface...
Abstract
Surface modification is the alteration of the surface composition or structure using energy or particle beams. This article discusses two different surface modification methods. The first, ion implantation, is the introduction of ionized species into the substrate using kilovolt to megavolt ion accelerating potentials. The second method, laser processing, is high-power laser melting with or without mixing of materials precoated on the substrate, followed by rapid melt quenching. The article also describes the advantages and disadvantages of the surface modification approach to promote corrosion resistance.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006677
EISBN: 978-1-62708-213-6
... specialized configurations for narrow applications, such as neural mapping in biology ( Ref 1 ), and within the semiconductor industry ( Ref 2 ), such as metrology, mask repair, and circuit edit. Some instruments have the FIB at a 90° angle relative to the SEM. In some cases, the FIB is vertical and the SEM...
Abstract
This article is intended to provide the reader with a good understanding of the underlying science, technology, and the most common applications of focused ion beam (FIB) instruments. It begins with a survey of the various types of FIB instruments and their configurations, discusses the essential components, and explains their function only to the extent that it helps the operator obtain the desired results. An explanation of how the components of ion optical column shape and steer the ion beam to the desired target locations is then provided. The article also reviews the many diverse accessories and options that enable the instrument to realize its full potential across all of the varied applications. This is followed by a detailed analysis of the physical processes associated with the ion beam interacting with the sample. Finally, a complete survey of the most prominent FIB applications is presented.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001767
EISBN: 978-1-62708-178-8
... to reveal grain boundaries on unetched samples and domain boundaries in ferromagnetic alloys; and the use of voltage contrast, electron beam-induced currents, and cathodoluminescence for the characterization and failure analysis of semiconductor devices. The article compares the features of SEM...
Abstract
Scanning electron microscopy (SEM) has shown various significant improvements since it first became available in 1965. These improvements include enhanced resolution, dependability, ease of operation, and reduction in size and cost. This article provides a detailed account of the instrumentation and principles of SEM, broadly explaining its capabilities in resolution and depth of field imaging. It describes three additional functions of SEM, including the use of channeling patterns to evaluate the crystallographic orientation of micron-sized regions; use of backscattered detectors to reveal grain boundaries on unetched samples and domain boundaries in ferromagnetic alloys; and the use of voltage contrast, electron beam-induced currents, and cathodoluminescence for the characterization and failure analysis of semiconductor devices. The article compares the features of SEM with that of scanning Auger microscopes, and lists the applications and limitations of SEM.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006657
EISBN: 978-1-62708-213-6
... the surface chemistry and interactions of solid surfaces of metals, semiconductors, ceramics, organic materials, and biomaterials. The techniques use electrons, x-rays, and ions as the probing sources, and the surface chemical information is derived from analysis of electrons and ions emitted from the surface...
Abstract
This article discusses the basic principles of and chemical effects in Auger electron spectroscopy (AES), covering various factors affecting the quantitative analyses of AES. The discussion covers instrumentation and sophisticated electronics typically used in AES for data acquisition and manipulation and various limitations of AES. Various examples highlighting the capabilities of the technique are also included.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001733
EISBN: 978-1-62708-178-8
... in 1924. Improvements in the gas x-ray detector by Geiger and Mueller in 1928 eventually led to the design of the first commercial wavelength-dispersive x-ray spectrometer by Friedman and Birks in 1948. More recently, other detectors, such as the germanium and the lithium-doped silicon semiconductor...
Abstract
This article provides an introduction to x-ray spectrometry, and discusses the role of electromagnetic radiation, x-ray emission, and x-ray absorption. It focuses on the instrumentation of wavelength-dispersive x-ray spectrometers, and energy dispersive x-ray spectrometers (EDS) that comprise x-ray tubes, the analyzing system, and detectors. The fundamentals of EDS operation are described. The article also provides useful information on preparation of various samples, explaining the qualitative and quantitative analyses of EDS. It reviews the applications of the x-ray spectrometry.
1