Skip Nav Destination
Close Modal
By
Charles M. Kay
By
Roy E. Beal, Rodger E. Cook
By
Mitchell R. Dorfman
By
A. Rabinkin
By
Sunil Jha, Michael Karavolis, Kevin Dunn, James Forster
By
Bo Hu
By
Wesley Wang, S. Liu
By
D.L. Olson, S. Liu, R.H. Frost, G.R. Edwards, D.A. Fleming
By
Kirsten Bobzin, Mehmet Öte, Tim Königstein, Lidong Zhao, Wolfgang Wietheger
Search Results for
self-fluxing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 366
Search Results for self-fluxing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001388
EISBN: 978-1-62708-173-3
... 915–955 1675–1750 RBCuZn Chloride-base + borax (c) 980–1205 1800–2200 BNi Cyanide-base 1120 2050 BCu Chloride-base Ferrous and nonferrous 675–1010 1250–1850 BAg (d) Chloride-base (a) Salt acts as both filler metal and heating medium. (b) Self-fluxing. (c...
Abstract
This article describes the dip brazing process and the principal types of furnaces used for molten-salt-bath dip-brazing applications. It provides information on equipment maintenance, which is divided into temperature control, control of the liquid, and maintenance of the vessel. The article presents the typical salts used for molten-salt dip brazing of carbon and low-alloy steels with selected filler metals in tabular form. It concludes with information on dip brazing of stainless steels, cast irons, and aluminum alloys and safety precautions of the process.
Book Chapter
Thermal Spray Applications in the Steel Industry
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005742
EISBN: 978-1-62708-171-9
..., which force the strip to turn into a coil, use a nickel-base self-fluxing alloy that is combustion sprayed and fused. This is one of only a very few coatings that has worked in this extremely harsh environment. Other surface-modification processes, such as submerged arc or welded coatings, also can...
Abstract
Thermal spray is an important surface-modification process implemented by the steel industry. This article reviews thermal spray materials and equipment used and also provides examples of where typical coated components result in improved performance. It contains a table that lists thermal spray applications in the iron-steel manufacturing industry.
Book Chapter
Brazing of Copper, Copper Alloys, and Precious Metals
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001454
EISBN: 978-1-62708-173-3
... to lower corrosion resistance. Zinc-containing filler metals sometimes lose this element or form voids if overheating is allowed to occur. The copper-phosphorus (BCuP) filler metals are self-fluxing when used to braze copper. Fluxes may be necessary when joining other copper alloys. The high-phosphorus...
Abstract
Copper, copper alloys, and precious metals are probably the most easily brazed metals because of their resistance to oxidation at high temperatures. This article provides a brief discussion on the metallurgy of copper, copper alloys, and precious metals and discusses the filler metals, brazing fluxes, joint clearance and design, and different brazing processes used in brazing of copper, copper alloys, and precious metals.
Book Chapter
Introduction to Applications for Thermal Spray Processing
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005732
EISBN: 978-1-62708-171-9
...-shrouded technology to minimize oxidation. Another example of process optimization is through posttreatments. One example is torch and/or furnace fusing of NiCrBSiC self-fluxing alloys to improve bonding for better impact resistance. Key fundamental articles in this Section that highlight the benefit...
Abstract
This article describes the process of selecting an optimum coating and material system for a specific application. It reviews critical coating functions that influence the coating selection process, and presents some application success stories. The article explores the benefits of thermal spray coatings and functions they provide. It also presents key references from various National Thermal Spray Conference, United Thermal Spray Conference, and International Thermal Spray Conference Proceedings from 2006 through 2012.
Book Chapter
Shielding Gases for Arc Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005597
EISBN: 978-1-62708-174-0
... properties and self-shielded flux cored arc welding. arc welding argon carbon dioxide dissociation flux cored arc welding gas metal arc welding gas purity helium hydrogen mechanical properties nitrogen oxidation potential oxygen plasma arc welding reactivity potential recombination self...
Abstract
The shielding gas used in an arc welding process has a significant influence on the overall performance of the welding system. These gases are argon, helium, oxygen, hydrogen, nitrogen, and carbon dioxide. This article discusses the shielding gas selection criteria for plasma arc welding, gas metal arc welding, and flux cored arc welding. It describes the basic properties of shielding gases, namely, dissociation, recombination, reactivity potential, oxidation potential, and gas purity. The article also provides information on the influence of the shielding gas on weld mechanical properties and self-shielded flux cored arc welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001355
EISBN: 978-1-62708-173-3
... arc between a continuous filler metal electrode and the workpiece. A tubular, flux-cored electrode makes this welding process unique. The flux contained within the electrode can make the electrode self-shielding. Alternatively, an external shielding gas may be required. Process Features Flux...
Abstract
In the flux-cored arc welding (FCAW) process, the heat for welding is produced by an electric arc between a continuous filler metal electrode and a workpiece. This article discusses the advantages and disadvantages and applications of the FCAW process. It schematically illustrates the semiautomatic FCAW equipment used in the gas-shielded FCAW process. The article discusses the manufacture of flux-cored electrodes and the classification of electrodes, such as carbon and low-alloy steel electrodes, stainless steel electrodes, and nickel-base electrodes. The functions of common core ingredients in FCAW electrodes are listed in a table.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005601
EISBN: 978-1-62708-174-0
... formulations using gas blends of 85 to 90% Ar/balance CO 2 were designed and used in common applications. Process Features Flux cored welding electrodes are supplied in two distinct product types: Gas-shielded flux cored arc welding (FCAW-G) process Self-shielded flux cored arc welding (FCAW-S...
Abstract
This article describes the process features, advantages, limitations, and applications of the flux cored arc welding (FCAW) as well as the equipment used in the process. Base metals, namely, carbon and low-alloy steels, stainless steels, and nickel-base alloys, welded by the FCAW process are reviewed. The article illustrates the manufacturing process for the electrodes used in FCAW and outlines the classification of carbon and low-alloy steel, stainless steel, and nickel-base electrodes.
Book Chapter
Summary of Fusion Welding Processes
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005643
EISBN: 978-1-62708-174-0
... welding Arc Alternating or direct current Automatic or semi-automatic; arc maintained in cavity of molten flux formed from granular material Slag and self-generated gas Carbon, low-alloy, and high-alloy steels; copper alloys 1 mm (0.04 in.) and upward (but generally over 10 mm, or 0.4 in.) Downhand...
Abstract
This article is a compilation of tables summarizing the fusion welding process. Included in the article is a table that presents the various fusion welding and cutting processes and their applications. Information on the general characteristics of arc welding processes is tabulated. The article also contains a list of the various criteria for selecting the suitable welding process for carbon steels.
Book Chapter
Selection Criteria for Brazing and Soldering Consumables
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001450
EISBN: 978-1-62708-173-3
... the presence of phosphorus (another potential melting-temperature depressant element) could cause unacceptable joint brittleness. Of the alloy additions that promote the self-fluxing of the filler metal during brazing, boron has the greatest “penetrating power.” On the other hand, phosphorus is a beneficial...
Abstract
This article focuses on the various criteria considered in the selection of product forms, joint types, solders, and filler metals for brazing and soldering of base material components.
Image
Splicing a column during the erection of a building in Los Angeles using th...
Available to PurchasePublished: 31 October 2011
Fig. 13 Splicing a column during the erection of a building in Los Angeles using the semiautomatic self-shielded, flux cored arc welding process
More
Book Chapter
Brazing With Clad Brazing Materials
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001392
EISBN: 978-1-62708-173-3
... the braze joint. Therefore, self-brazing materials often eliminate the need for pretreatments and fluxes to ensure adequate flow and wetting. Clad brazing materials should not be used solely as a substitute material or as a joining method in an existing design that is based on conventional assembly...
Abstract
This article focuses on clad brazing material, which is defined as any base material or alloy that is clad with an appropriate lower-melting-point brazing filler metal. It provides information on typical clad brazing strip products in a tabular form and lists the advantages of using clad brazing materials. The article compares the steps in using brazing preforms to fabricate a brazed assembly with the steps involved in using clad brazing materials. It concludes with a discussion on design and manufacturing considerations, during brazing with clad brazing materials.
Book Chapter
Brazing
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003210
EISBN: 978-1-62708-199-3
... with high-resistivity electrodes or electrode facings is an efficient method of providing localized heating at the joint in this highly conductive metal, but avoiding fusion of the copper base metal. In addition, copper is the only frequently used metal that can be brazed in air with self-fluxing filler...
Abstract
This article provides information about the selection of brazing processes and filler metals and describes the brazing (heating) methods, including manual torch brazing, furnace brazing, induction brazing, dip brazing, resistance brazing and specialized brazing processes such as diffusion and exothermic brazing. The article explains joint design, filler materials, fuel gases, equipment, and fluxes in the brazing methods. The article also describes the brazing of steels, stainless steels, cast irons, heat-resistant alloys, aluminum alloys, copper and copper alloys, and titanium and titanium alloys.
Book Chapter
Metal and Alloy Powders for Welding, Hardfacing, Brazing, and Soldering
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006079
EISBN: 978-1-62708-175-7
... (particularly in cobalt-base alloys). Self-fluxing nickel-base powders are routinely made by this process, because oxygen pickup is minimal and the process is more economical. Apparent density and flow rate also depend on the characteristics mentioned above. Irregular particle shape, numerous satellites...
Abstract
Metals and alloy powders are used in welding, hardfacing, brazing, and soldering applications, which include hardface coatings, the manufacturing of welding stick electrodes and flux-cored wires, and additives in brazing pastes or creams. This article reviews these applications and the specific powder properties and characteristics they require.
Book Chapter
Nature and Behavior of Fluxes Used for Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005571
EISBN: 978-1-62708-174-0
... and ferro-additions. The two types of flux cored electrodes are gas-shielded flux cored electrodes and self-shielded flux cored electrodes ( Ref 26 ). Table 10 ves typical chemical compositions for the three types of carbon-dioxide-shielded cored electrodes. Table 11 gives the typical chemical...
Abstract
Fluxes are added to the welding environment to improve arc stability, provide a slag, add alloying elements, and refine the weld pool. This article discusses the effect of oxygen, which is an important chemical reagent to control the weld metal composition, microstructure, and properties. It provides information on the inclusions that form as a result of reactions between metallic alloy elements and nonmetallic tramp elements, or by mechanical entrapment of nonmetallic slag or refractory particles. The article reviews the considerations of flux formulation during shielded metal arc welding and flux cored arc welding (FCAW). It describes the types of fluxes used for submerged arc welding and FCAW as well as five essential groups of flux ingredients and their interactions.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
..., such as AWS BCuP, BNi-6, and BNi-7, are considered self-fluxing and can remove the need for external flux. The self-fluxing characteristic occurs because the element phosphorus possesses a greater affinity for oxygen than for the base metal. These braze filler metals should not be used to braze any iron...
Abstract
The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001455
EISBN: 978-1-62708-173-3
... abrasive cleaning. Thin, high-silicon-content braze foil should only be degreased to prevent the loss of available filler metal that is needed at the braze joint. Assembly In flux brazing, self-fixturing is an excellent assembly method. It may be accomplished through the use of tabs, rivets...
Abstract
Aluminum, a commonly used base material for brazing, can be easily fabricated by most manufacturing methods, such as machining, forming, and stamping. This article outlines non-heat-treatable wrought alloys typically used as base metals for the brazing process. It highlights chloride-active and fluoride-active types of fluxes that are used for torch, furnace, or dip brazing processes. The article explains the steps to be performed, including the designing of joints, preblaze cleaning, assembling, brazing techniques (dip brazing, furnace and torch brazing, fluxless vacuum brazing), flux removal techniques, and postbraze heat treatment processes. It concludes with information on the safety precautions to be followed during the brazing process.
Book Chapter
Introduction to Arc Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005580
EISBN: 978-1-62708-174-0
... with automatic or semiautomatic processes. The Innershield process, also referred to as the self-shielded, flux cored arc welding process, solved the problem by incorporating the fluxing and shielding materials inside tubular filler-metal wire. The result was a self-shielded electrode that could be coiled...
Abstract
Arc welding is one of several fusion processes for joining metals. This article introduces the fundamentals of arc welding and provides a summary of its history and early discoveries.
Book Chapter
Nature and Behavior of Fluxes Used for Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001339
EISBN: 978-1-62708-173-3
...) Flux-cored arc welding (FCAW) uses a hollow wire filled with flux reagents and ferro-additions. The two types of flux-cored electrodes are carbon-dioxide-shielded flux-cored electrodes and self-shielded flux-cored electrodes ( Ref 26 ). Table 8 gives typical compositions for the three types of carbon...
Abstract
Fluxes are added to the welding environment to improve arc stability, to provide a slag, to add alloying elements, and to refine the weld pool. This article describes the effect of oxygen that directly reacts with alloying elements to alter their effective role by reducing hardenability, promoting porosity, and producing inclusions. It proposes basicity index for welding as a measure of expected weld metal cleanliness and mechanical properties. The article discusses alloy modification in terms of slipping and binding agents, slag formation, and slag detachability. It reviews the types of fluxes for different arc welding processes, such as shielded metal arc welding (SMAW), flux-cored arc welding (FCAW), and submerged arc welding (SAW).
Book Chapter
Thermal Spray Coatings for Friction and Wear Control
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006419
EISBN: 978-1-62708-192-4
.... Furthermore, rolls and rollers for steel production, which must operate flawlessly under relatively tough conditions, can be coated by thermal spray. In particular, nickel-base, self-fluxing alloys and cermets, such as WC-Co and NiCr-Cr 3 C 2 , applied by the HVOF process, are suitable for these demanding...
Abstract
This article describes the technology of thermal spraying with regard to tribological applications. It introduces the basics of tribology and presents the fundamentals of thermal spraying and the relevant process variants and suitable materials. Specific application areas are described regarding the different forms of elementary movement in the corresponding tribological system. The article provides an overview of thermal spray coatings and possible uses for friction and wear control, besides operating as corrosion protection and a thermal barrier. The article provides examples that illustrate how tribological performance can be improved.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001432
EISBN: 978-1-62708-173-3
... in arc welding applications are listed in a table. The article presents process selection guidelines for arc welding carbon steels. It provides information on the shielded metal arc welding, gas-metal arc welding, and flux-cored arc welding, gas-tungsten arc and plasma arc welding, submerged arc welding...
Abstract
This article discusses the susceptibility of carbon steels to hydrogen-induced cracking, solidification cracking, lamellar tearing, weld metal porosity, and heat-affected zone (HAZ) mechanical property variations. The composition and mechanical properties of selected carbon steels used in arc welding applications are listed in a table. The article presents process selection guidelines for arc welding carbon steels. It provides information on the shielded metal arc welding, gas-metal arc welding, and flux-cored arc welding, gas-tungsten arc and plasma arc welding, submerged arc welding, electrogas welding, electroslag welding, and stud arc welding.
1