Skip Nav Destination
Close Modal
Search Results for
selective leaching
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 232 Search Results for
selective leaching
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching. corrosion crevice corrosion dealuminification...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... Abstract This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection...
Abstract
This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection, visual examination, microscopic examination, chemical analysis, and mechanical tests. The article explains corrosion fatigue of tubing of heat exchangers caused by aggressive environment and cyclic stress. It also discusses the effects of design, welding practices, and elevated temperatures on the failures of heat exchangers.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003609
EISBN: 978-1-62708-182-5
... between molten metal and aqueous corrosion. General, or uniform, metal oxidation and dissolution is a common form of molten salt corrosion but is not the only form of corrosion seen. Selective leaching is very common at higher temperatures, as are pitting and crevice corrosion at lower temperatures...
Abstract
This article discusses two general mechanisms of corrosion in molten salts. One is the metal dissolution caused by the solubility of the metal in the melt. The second and most common mechanism is the oxidation of the metal to ions. Specific examples of the types of corrosion expected for the different metal-fused salt systems are also provided. The metal-fused salt systems include molten fluorides, chloride salts, molten nitrates, molten sulfates, hydroxide melts, and carbonate melts. The article concludes with information on prevention of molten salt corrosion.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003169
EISBN: 978-1-62708-199-3
... at one time to give sulfides an oily surface that would make them float without affecting the gangue remaining in the pulp. Today, selective reagents, which can distinguish among various sulfides, are used. These reagents, called collectors, are added along with other agents that will stabilize...
Abstract
Ores, which consist of the primary valuable mineral, predominant gangue content, valuable by-products, and detrimental impurities, are extracted and directed to mineral processing. This article describes the mineral processing facilities, such as crushers, grinders, concentrators, separators, and flotation devices that are used for particle size reduction, separation of particles according to their settling rates in fluids and dewatering of concentrate particles. It explains the basic principles, flow diagrams, ore concentrate preparation methods, and equipment of major types of metallurgical processes, including pyrometallurgical, hydrometallurgical, and electrometallurgical processes.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003810
EISBN: 978-1-62708-183-2
... forms of corrosion as other metals and alloys: Uniform or general attack Galvanic or two-metal corrosion Crevice corrosion Pitting Intergranular corrosion Selective leaching (graphitic corrosion) Erosion-corrosion Stress corrosion Corrosion fatigue Fretting corrosion...
Abstract
This article discusses the five basic matrix structures in cast irons: ferrite, pearlite, bainite, martensite, and austenite. The alloying elements, used to enhance the corrosion resistance of cast irons, including silicon, nickel, chromium, copper, molybdenum, vanadium, and titanium, are reviewed. The article provides information on classes of the cast irons based on corrosion resistance. It describes the various forms of corrosion in cast irons, including graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. The cast irons suitable for the common corrosive environments are also discussed. The article reviews the coatings used on cast irons to enhance corrosion resistance, such as metallic, organic, conversion, and enamel coatings. It explains the basic parameters to be considered before selecting the cast irons for corrosion services.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006349
EISBN: 978-1-62708-179-5
... Intergranular corrosion Selective leaching (graphitic corrosion) Erosion-corrosion Stress corrosion Corrosion fatigue Fretting corrosion Microbiological Graphitic Corrosion A form of corrosion unique to cast irons is a selective leaching attack commonly referred to as graphitic...
Abstract
Cast irons provide excellent resistance to a wide range of corrosion environments when properly matched with that service environment. This article presents basic parameters to be considered before selecting cast irons for corrosion services. Alloying elements can play a dominant role in the susceptibility of cast irons to corrosion attack. The article discusses the various alloying elements, such as silicon, nickel, chromium, copper, and molybdenum, that enhance the corrosion resistance of cast irons. Cast irons exhibit the same general forms of corrosion as other metals and alloys. The article reviews the various forms of corrosions, such as graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. It discusses the four general categories of coatings used on cast irons to enhance corrosion resistance: metallic, organic, conversion, and enamel coatings.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
...-transfer hardware (e.g., tubing in a shell-and-tube heat exchanger) must be resistant to general corrosion, SCC, selective leaching (e.g., dezincification of brass), and oxygen-cell attack in whatever environments are encountered before service, in service, and during periods in which the equipment...
Abstract
Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion corrosion.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003225
EISBN: 978-1-62708-199-3
...; can show striations at magnifications above 500× Overload zone: can be either ductile or brittle Path of penetration can be irregular, intergranular, or a selective phase attacked EDS (c) can help identify corrodent Wear debris and/or abrasive can be characterized as to morphology...
Abstract
Analysis of the failure of a metal structure or part usually requires identification of the type of failure. Failure can occur by one or more of several mechanisms, including surface damage (such as corrosion or wear), elastic or plastic distortion, and fracture. This leads to a wide range of failures, including fatigue failure, distortion failure, wear failure, corrosion failure, stress-corrosion cracking, liquid-metal embrittlement, hydrogen-damage failure, corrosion-fatigue failure, and elevated-temperature failure. This article describes the classification of fractures on a macroscopic scale as ductile fractures, brittle fractures, fatigue fractures, and fractures resulting from the combined effects of stress and environment.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004219
EISBN: 978-1-62708-184-9
..., erosion-corrosion, and intergranular corrosion. The article explains the corrosion in tanks, reactor vessels, cyclic loading machinery, and pressure leaching equipment. corrosion crevice corrosion erosion-corrosion intergranular corrosion pitting corrosion reactor vessels rock bolts uniform...
Abstract
This article describes the corrosion of principal parts of mining equipment such as mine shafts, wire rope, rock bolts, and pump and piping systems. It discusses the diagnosis and prevention of various types of corrosion including uniform corrosion, pitting corrosion, crevice corrosion, erosion-corrosion, and intergranular corrosion. The article explains the corrosion in tanks, reactor vessels, cyclic loading machinery, and pressure leaching equipment.
Book Chapter
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003718
EISBN: 978-1-62708-182-5
... to produce a conversion coating consisting of trivalent and hexavalent chromium com- pounds. Glossary of Terms / 1015 corrosion-erosion. See erosion-corrosion. curring at a minimum and almost constant dealumini cation. Selective leaching of alumi- corrosion fatigue. The process in which a metal rate...
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003831
EISBN: 978-1-62708-183-2
... alloy and the base metal, there is a potential for pitting corrosion. Selective Dealloying Many brazed joints consist of two or more phases. Sometimes, one or more of the phases are subjected to selective attack. Occasionally, an element is selectively leached from the braze. An example...
Abstract
Corrosion is often thought of as rusting, the process of deterioration undergone by a metal when it is exposed to air or water. This article provides the fundamentals of joints corrosion and primarily addresses the various forms of corrosion observed in brazed and soldered joints and their causes. It describes the role of proper brazing procedures in controlling corrosion. The article concludes with information on the corrosion resistance of various brazing alloy systems.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.9781627081825
EISBN: 978-1-62708-182-5
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005683
EISBN: 978-1-62708-198-6
.... If the electrochemical measurements show a true and significant increase in the dissolution rate caused by galvanic coupling, the mass loss may have to be considered in the design of the implant, especially of those with very small cross sections. More likely, the acceleration of selective leaching of toxic elements may...
Abstract
The interaction of an implant with the human body environment may result in degradation of the implant, called corrosion. This article discusses the corrosion testing of metallic implants and implant materials. The corrosion environments for medical implants are the extracellular human body fluids, very complex solutions containing electrolytes and nonelectrolytes, inorganic and organic constituents, and gases. The article describes the fundamentals of electrochemical corrosion testing and provides a brief discussion on various types of corrosion tests. It illustrates corrosion current density determination by Tafel extrapolation, potentiodynamic measurement of the polarization resistance, electrochemical impedance measurement, and potentiostatic deaeration. Tests combining corrosion and mechanical forces, such as fretting corrosion tests, environment-assisted cracking tests, and ion-leaching tests are also discussed.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003702
EISBN: 978-1-62708-182-5
... Abstract This article outlines the processes by which materials are selected to prevent or control localized corrosion, galvanic corrosion, and intergranular corrosion. It reviews the operating conditions and the design of candidate materials for material selection. The article discusses...
Abstract
This article outlines the processes by which materials are selected to prevent or control localized corrosion, galvanic corrosion, and intergranular corrosion. It reviews the operating conditions and the design of candidate materials for material selection. The article discusses various corrosion-resistant materials, including ferrous and nonferrous metals and alloys, thermoplastics, reinforced thermosetting plastics, nonmetallic linings, glass, carbon and graphite, and catalyzed resin coatings. It examines an unusual form of intergranular corrosion known as exfoliation, which occurs in aluminum-copper alloys. The article also describes three types of erosion-corrosion: liquid erosion-corrosion, cavitation, and fretting. It concludes with information on the various factors to be considered for material selection, including minimum cost or economic design, minimum corrosion, minimum investment, and minimum maintenance.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001092
EISBN: 978-1-62708-162-7
.... Another recovery procedure involves precipitating indium phosphate selectively from slightly acidic solutions, converting the phosphate to the oxide by leaching in a strong caustic soda solution, and then reducing the oxide to metal. Indium that is distilled with zinc in zinc retort smelting processes...
Abstract
This article focuses on the use of indium and bismuth in low-melting-temperature solders and fusible alloys. It describes how the two elements typically occur in nature and how they are recovered and processed for commercial use. It also provides information on designations, classification, composition, properties (including temperatures ranges), and some of the other ways in which indium and bismuth alloys are used.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005667
EISBN: 978-1-62708-198-6
... Abstract This article discusses several aspects of biocompatibility of polymers, including the selection of a suitable polymer, specific use of a material, contact of polymer on body site, and duration of the contact. It describes the factors influencing the biological response of the polymer...
Abstract
This article discusses several aspects of biocompatibility of polymers, including the selection of a suitable polymer, specific use of a material, contact of polymer on body site, and duration of the contact. It describes the factors influencing the biological response of the polymer from a biocompatibility perspective. These include raw materials, the manufacturing process, cleaning and sterilization processes, and biodegradation and biostability. The article reviews the general testing methods of polymers, such as chemical, mechanical and thermal. It concludes with a section on the guidance, provided by the regulatory authorities, on the biocompatibility testing of polymers and polymer-containing devices that can aid in selecting the right analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
...), inhibition, and cathodic or anodic protection. The service life of the affected component can normally be estimated with a reasonable degree of accuracy, and catastrophic failures can be avoided. Localized corrosion, such as crevice and pitting corrosion, intergranular corrosion, selective leaching...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006140
EISBN: 978-1-62708-175-7
... titanium engine housing using the metal can approach. (a) CAD (computer) model of the engine housing, (b) assembling of the HIP capsule with inserts for filling with powder, (c) capsule after HIP, (d) premachining of the steel capsule and inserts for easier and faster removal of steel by acid leaching, (e...
Abstract
Prealloyed (PA) powder metallurgy is a technique where complex near-net shape titanium aircraft components are fabricated with low buy-to-fly ratios. This article describes the physical principle, mechanism, and simulation and modeling of metal can and hot isostatic pressing (HIP) processes involved in the PA powder metallurgy technique. It discusses the technical problems addressed in shape control and their solutions for understanding the advantages of powder metallurgy HIP.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001346
EISBN: 978-1-62708-173-3
... Abstract Soldering is defined as a joining process by which two substrates are bonded together using a filler metal with a liquidus temperature. This article provides an overview of fundamentals of soldering and presents guidelines for flux selection. Types of fluxes, including rosin-base...
Abstract
Soldering is defined as a joining process by which two substrates are bonded together using a filler metal with a liquidus temperature. This article provides an overview of fundamentals of soldering and presents guidelines for flux selection. Types of fluxes, including rosin-base fluxes, organic fluxes, inorganic fluxes, and synthetically activated fluxes, are reviewed. The article describes the joint design and precleaning and surface preparation for soldering. It addresses some general considerations in the soldering of electronic devices. Soldering process parameters, affecting wetting and spreading phenomena, such as temperature, time, vapor pressure, metallurgical and chemical nature of the surfaces, and surface geometry, are discussed. The article also describes the applications of furnace soldering, resistance soldering, infrared soldering, and ultrasonic soldering. It contains a table that lists tests commonly used to evaluate the solderability properties of selected soldered components.
1