Skip Nav Destination
Close Modal
By
William L. Powell, Alan P. Druschitz, Jim Frost
By
Thomas A. Wolfe, John L. Johnson, Pankaj K. Mehrotra
By
John M. Henshaw
Search Results for
scrap sources
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 459
Search Results for scrap sources
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Recycling of Iron, Steel, and Superalloys
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Image
in Operation of Induction Furnaces for Steel and Non-iron Materials
> Induction Heating and Heat Treatment
Published: 09 June 2014
Image
Control panel for two 7.5 ton, 2.2 MW, 65 Hz induction crucible furnaces fo...
Available to Purchase
in Operation of Induction Furnaces for Steel and Non-iron Materials
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 11 Control panel for two 7.5 ton, 2.2 MW, 65 Hz induction crucible furnaces for melting aluminum scrap. Source: Ref 15
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001053
EISBN: 978-1-62708-161-0
... that deal in scrap can be categorized as either processors or brokers. Processors purchase iron and steel scrap and process, or upgrade, the scrap to meet customer needs. Brokers act as intermediaries, purchasing the scrap from a source and selling it unaltered to a consumer. There are more scrap processors...
Abstract
A significant amount of the worldwide demand for metals is met with recycled materials acquired by metal producers in the form of purchased scrap. This article focuses primarily on the methods and technology used to process and repurpose the vast amounts of purchased scrap that recirculate in the industrial supply chain. It describes the U.S. market for iron and steel scrap, providing information on scrap use by industry, factors influencing demand, and the purchased scrap supply. Iron and steel recycling is discussed separately from stainless steel and superalloy recycling in this article, as the scrap industry treats them differently. The scrap processing of iron involves collection, separation and sorting, size reduction and compaction, detinning, blending, and incineration. The recycling of stainless steels and superalloys follows the same process, but requires several additional steps, including secondary nickel refining, degreasing, and separation of metallurgical wastes.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001118
EISBN: 978-1-62708-162-7
... on the recycling of nonferrous alloys, namely, aluminum, copper, magnesium, tin, lead, zinc, and titanium, providing details on the sources, consumption and classification of scrap, and the technological trends and developments in recycling. aluminum recycling copper recycling lead recycling magnesium...
Abstract
Many nonferrous metals, including aluminum, nickel, copper, and others, are among the few materials that do not degrade or lose their chemical or physical properties in the recycling process. As a result, these metals can be recycled an infinite number of times. This article focuses on the recycling of nonferrous alloys, namely, aluminum, copper, magnesium, tin, lead, zinc, and titanium, providing details on the sources, consumption and classification of scrap, and the technological trends and developments in recycling.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003222
EISBN: 978-1-62708-199-3
... materials. Because of the ensuing economic and legislative incentives, recycled metals are now recognized as a vast source of natural resources for recovery. Today, recycled scrap is a major raw material for the metals industry, supplying up to 100% of the feedstock for some products. Producing many...
Abstract
This article focuses on the recycling of metals including iron and steel, stainless steel, superalloys, nickel, aluminum, copper, precious metals, lead, magnesium, tin, titanium, and zinc. It provides information on the identification and sorting of scrap metals and discusses the equipment and procedures used for small-scale and large-scale scrapping operations.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006484
EISBN: 978-1-62708-207-5
... recycling became more prevalent, because the source aluminum is now mostly on the ground rather than in it. Secondary aluminum, produced from scrap and waste materials, currently comprises nearly half of the aluminum produced in Europe and North America, and the fraction continues to grow. Metal production...
Abstract
Aluminum possesses many characteristics that make it highly compatible with recycling. Production of aluminum from scrap has a number of advantages. This article discusses the technology for the recovery, sorting, and remelting of aluminum. It describes the collection and acquisition of aluminum scrap in transportation, packaging, electrical and electronic, and building and construction sectors. The article reviews the technologies used to accomplish comminution for aluminum: shearing, knife shredding, and swing-hammer shredding. It provides a description of the devices used in scrap sorting, such as hand sorting, air classification, magnetic separation, eddy-current separation, heavy-media separation, and sensor-based sorting. The article also describes thermal processing, refining and casting, and dross processing of aluminum. It provides information on reverberatory and electric furnaces used for melting aluminum.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006318
EISBN: 978-1-62708-179-5
... and limiting their concentration, often at very low levels, can significantly degrade casting performance. The primary source of these tramp elements is from the steel scrap, pig iron, and cast iron returns used as major charge materials for cast iron melting. Other trace elements are intentionally added...
Abstract
During the melting and solidification of cast irons, certain trace (minor) elements may unintentionally accumulate to an extent that they have a detrimental effect on the microstructure of castings. This article discusses the residual elements, trace elements, and tramp elements in cast irons. Elements that influence the matrix structure of cast irons are commonly classified as ferrite-promoting elements or pearlite-promoting elements. The article describes the effects of minor elements on microstructure and properties of cast irons. It discusses the use of a combination of tools to control the effects of minor elements on the structure and properties of cast irons. The article concludes with information on allowable levels of trace and tramp elements in cast irons.
Book Chapter
Cupola Furnaces
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005197
EISBN: 978-1-62708-187-0
... is to be melted each day, distance from the scrap-processing source, reliability of the transportation system, severe weather issues, and so on. Each charge material needs to be transferred to a weigh hopper, where a designated weight is measured out and transferred to a charge bucket for travel to the top...
Abstract
In high-iron-tonnage operations, the cupola remains the most efficient source of continuous high volumes of iron needed to satisfy high production foundries or the multiple casting machines of centrifugal pipe producers. This article explores successful improvement technologies in cupola equipment, including preheated air blast, recuperative hot blast systems, and duplex electric holders. It discusses the shell, intermittent or continuous tapping, tuyere and blower systems, refractory lining, water-cooled cupolas, emission-control systems, and storage and handling of the charge materials. The article provides a discussion on the control tests for cupola, including the chill test and mechanical test. It concludes with information on specialized cupolas such as the cokeless cupola and the plasma-fired cupola.
Image
Flow diagram for aluminum in the United States, showing the role of recycli...
Available to Purchase
in Recycling of Nonferrous Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 2 Flow diagram for aluminum in the United States, showing the role of recycling in the industry. Scrap recycling (lower left) includes scrap collectors, processors, dealers and brokers, sweat furnace operators, and dross reclaimers. Source: U.S. Bureau Mines
More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003223
EISBN: 978-1-62708-199-3
... and design to recycle the discarded product. Fig. 1 Possibilities for recycling. Source: Ref 1 The most obvious means of recycling products at the end of their life cycle is to provide a closed-loop or scrap stream to return the product to the manufacturer. The very successful examples...
Abstract
Product design greatly influences the recycling and reuse of manufacturing materials. This article presents a design for recycling strategy based on ease of disassembly, minimizing process scrap, using readily recyclable materials, and labelling or otherwise identifying parts. It also discusses the concept of life-cycle analysis (LCA), a quantitative accounting of the environmental and economic costs of using a given material and the energy required to make, distribute, operate, and eventually dispose of the host product and its constituent materials. An important but often overlooked step in the LCA process is to identify potential improvement pathways.
Image
Impact of bend anisotropy on part layout. (a) Hypothetical part, which has ...
Available to PurchasePublished: 01 January 2006
orientations. (b) Potential nesting of blanks for the part shown in (a). Layout A is required for directional alloys such as C51000 and results in 38% scrap; a nondirectional alloy such as C68800 would allow the more efficient layout B, with 23% scrap. Dimensions given in millimeters (1 in.=25.4 mm). Source
More
Book Chapter
Production of Carbide Powders
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006052
EISBN: 978-1-62708-175-7
..., Iron, Nickel Cobalt is the most common binder in hard metal production, but nickel and iron are also used. Cobalt processing is reviewed in detail in Ref 24 . The largest sources of cobalt are from secondary ore sources (i.e., nickel laterites) and cemented carbide scrap. Typically...
Abstract
This article discusses the methods and procedures used to extract, purify, and synthesize tungsten carbide powder, metal, and other refractory carbide/nitride powders used in hard metal production. Selection of powders, additives, equipment, and processes for making ready-to-press hard metal powders is also discussed. The article also provides information on the emerging technologies for tungsten carbide synthesis and binders in hard metal production, such as cobalt, iron, and nickel.
Book Chapter
Recycling and Disposal of Polymer-Matrix Composites
Available to PurchaseBook: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003471
EISBN: 978-1-62708-195-5
... interspersed in composites accounts for some of the difficulties in recycling postconsumer and factory-generated scrap. Nonetheless, many researchers have attempted to develop technically feasible, economically viable, and environmentally acceptable recycling processes for polymer-matrix composites...
Abstract
This article begins with a discussion on the driving forces for recycling composites. It reviews the recycling process of thermoset-matrix composites and thermoplastic-matrix composites. The recycling of thermoset-matrix composites includes regrind, chemical, energy recovery, and thermal processes. Thermoplastic-matrix composites are recycled by regrinding, compounding/blending and reprocessing. The article concludes with discussion on the properties of recycled composite fibers.
Image
U.S. aluminum scrap consumption by type of company for the years 1972 to 19...
Available to Purchase
in Recycling of Nonferrous Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 3 U.S. aluminum scrap consumption by type of company for the years 1972 to 1986. Source: U.S. Bureau of Mines
More
Image
Percentage of U.S. titanium scrap that was recycled to ingot from 1964 to 1...
Available to Purchase
in Recycling of Nonferrous Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 19 Percentage of U.S. titanium scrap that was recycled to ingot from 1964 to 1988. Source: U.S. Bureau of Mines
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002438
EISBN: 978-1-62708-194-8
... are blown off the remaining scrap or “No. 2 frag” is deposited in a large pile. “No. 1 frag” comes from a uniform material source where contamination and mixed material is not a problem. The “No. 2 frag” is more common and comes from a mixed input stream such as has been described (cars, washing machines...
Abstract
This article discusses Allenby's two streams for environmental aspects of design: generic and specific concerns. Generic concerns include guidelines that provide the structure in which specific techniques can be developed and used. Specific methods are environmentally responsible for design and specific information that engineers can use. These methods include life cycle assessment, environmental impact assessment, quality function deployment, design for “X”, failure modes and effects analysis, and design for disassembly.
Image
Predicted melting times for vertical steel plates and cylinders, 2.5 mm (0....
Available to PurchasePublished: 01 December 2008
Fig. 14 Predicted melting times for vertical steel plates and cylinders, 2.5 mm (0.098 in.) scrap thickness and 0.1% C composition, [(%S) i = 0.03] immersed in stagnant iron-carbon baths at different bath temperatures. Source: Ref 27
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005195
EISBN: 978-1-62708-187-0
... hole, water-cooling system, preheat and furnace scrap burners, and ladles. The article describes the acid and basic steelmaking practices. It discusses the raw materials used, oxidation process, methods of heat reduction, and deoxidation process in the practices. The article provides a discussion...
Abstract
This article focuses on the construction, operation of electric arc furnaces (EAF), and their auxiliary equipment in the steel foundry industry. It provides information on the power supply of EAF and discusses the components of the EAF, including the roof, furnace shell, spout and tap hole, water-cooling system, preheat and furnace scrap burners, and ladles. The article describes the acid and basic steelmaking practices. It discusses the raw materials used, oxidation process, methods of heat reduction, and deoxidation process in the practices. The article provides a discussion on the arc melting of iron and EAF steelmaking.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005205
EISBN: 978-1-62708-187-0
... the sources of atmospheric contamination in plasma melting furnaces and their control measures. The equipment used in plasma melting furnaces are also discussed. The article provides a detailed discussion on various plasma melting processes, such as plasma consolidation, plasma arc remelting, plasma cold...
Abstract
Plasma melting is a material-processing technique in which the heat of thermal plasma is used to melt a material. This article discusses two typical design principles of plasma torches in the transferred mode: the tungsten tip design and the hollow copper electrode design. It describes the sources of atmospheric contamination in plasma melting furnaces and their control measures. The equipment used in plasma melting furnaces are also discussed. The article provides a detailed discussion on various plasma melting processes, such as plasma consolidation, plasma arc remelting, plasma cold hearth melting, and plasma casting.
1