Skip Nav Destination
Close Modal
By
William L. Powell, Alan P. Druschitz, Jim Frost
By
Erwin Dötsch
By
B. Mishra
Search Results for
scrap charging
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 234
Search Results for scrap charging
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Cokeless cupola showing scrap charging, water-cooled grates, burner locatio...
Available to PurchasePublished: 01 December 2008
Image
Cokeless cupola showing scrap charging, water-cooled grates, burner locatio...
Available to PurchasePublished: 31 August 2017
Image
Swirl scrap charge melter, which uses a continuous melting process for UBC ...
Available to PurchasePublished: 01 December 1998
Image
Melting processes for UBC scrap. (a) Early can scrap melter. (b) More-advan...
Available to Purchase
in Recycling of Nonferrous Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 10 Melting processes for UBC scrap. (a) Early can scrap melter. (b) More-advanced swirl scrap charge melter, which uses a continuous melting process
More
Image
Electric arc furnace being charged with baled scrap. Courtesy of the Americ...
Available to Purchase
in Recycling of Iron, Steel, and Superalloys
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 1 Electric arc furnace being charged with baled scrap. Courtesy of the American Iron and Steel Institute
More
Image
Charge yard arrangement showing scrap delivery, storage bins, weigh hoppers...
Available to PurchasePublished: 01 December 2008
Fig. 6 Charge yard arrangement showing scrap delivery, storage bins, weigh hoppers, and charging bucket
More
Image
Charge yard arrangement showing scrap delivery, storage bins, weigh hoppers...
Available to PurchasePublished: 31 August 2017
Fig. 4 Charge yard arrangement showing scrap delivery, storage bins, weigh hoppers, and charging bucket. Coke and limestone are usually stored in covered overhead storage bins and are discharged into a weigh hopper and then into the charge buckets.
More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003173
EISBN: 978-1-62708-199-3
.... In foundry melting, the charge usually consists primarily of scrap and foundry returns (gates, risers, and scrapped castings). Chemistry is adjusted by adding the elements needed to reach the proper composition. Scrap must be preheated before charging to burn off machining oil, which can contaminate...
Abstract
The melting process often includes refining and treating the metal. The choice of which type of melting to use depends on a number of factors: type of alloy being melted, the local cost of electric power, and local environmental regulations. This article discusses the principles, furnace types, charging practices of metal melting methods, namely induction melting, cupola melting, arc melting, crucible melting, reaction melting, and vacuum melting, and the refractories and charging practice of reverberatory furnaces. Molten metal treatment of steels and aluminum also is discussed in the article.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001053
EISBN: 978-1-62708-161-0
... are used today, each utilizing scrap. Most steel, about 60%, is currently produced in a basic oxygen furnace (BOF), which requires about 25 to 30% scrap. In the steelmaking process, scrap acts as a coolant in addition to providing part of the required iron. The metallic charge to a BOF is comprised of hot...
Abstract
A significant amount of the worldwide demand for metals is met with recycled materials acquired by metal producers in the form of purchased scrap. This article focuses primarily on the methods and technology used to process and repurpose the vast amounts of purchased scrap that recirculate in the industrial supply chain. It describes the U.S. market for iron and steel scrap, providing information on scrap use by industry, factors influencing demand, and the purchased scrap supply. Iron and steel recycling is discussed separately from stainless steel and superalloy recycling in this article, as the scrap industry treats them differently. The scrap processing of iron involves collection, separation and sorting, size reduction and compaction, detinning, blending, and incineration. The recycling of stainless steels and superalloys follows the same process, but requires several additional steps, including secondary nickel refining, degreasing, and separation of metallurgical wastes.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005195
EISBN: 978-1-62708-187-0
.... All major additions are made to the furnace through the roof by swinging the roof out of the way and charging scrap, fluxes, and carbon from loaded buckets. The furnace has two or three electrodes mounted vertically through the roof of the furnace that float just above the surface of the cold...
Abstract
This article focuses on the construction, operation of electric arc furnaces (EAF), and their auxiliary equipment in the steel foundry industry. It provides information on the power supply of EAF and discusses the components of the EAF, including the roof, furnace shell, spout and tap hole, water-cooling system, preheat and furnace scrap burners, and ladles. The article describes the acid and basic steelmaking practices. It discusses the raw materials used, oxidation process, methods of heat reduction, and deoxidation process in the practices. The article provides a discussion on the arc melting of iron and EAF steelmaking.
Book Chapter
Cupola Furnaces
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005197
EISBN: 978-1-62708-187-0
... bed of coke. Alternate layers of scrap metal and coke are charged into the top of the cupola. In its slow descent, the scrap metal is heated to the melting temperature by direct contact with the upward flow of the hot gases from the coke combustion. The molten-metal droplets collect in the inner...
Abstract
In high-iron-tonnage operations, the cupola remains the most efficient source of continuous high volumes of iron needed to satisfy high production foundries or the multiple casting machines of centrifugal pipe producers. This article explores successful improvement technologies in cupola equipment, including preheated air blast, recuperative hot blast systems, and duplex electric holders. It discusses the shell, intermittent or continuous tapping, tuyere and blower systems, refractory lining, water-cooled cupolas, emission-control systems, and storage and handling of the charge materials. The article provides a discussion on the control tests for cupola, including the chill test and mechanical test. It concludes with information on specialized cupolas such as the cokeless cupola and the plasma-fired cupola.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006484
EISBN: 978-1-62708-207-5
... upgrading and before charging to a furnace for remelting. Eddy-Current Separation (ECS) When a conductive particle (such as a piece of scrap) enters the magnetic field generated by a permanent magnet, the field causes an eddy current to flow in the particle. When this particle passes...
Abstract
Aluminum possesses many characteristics that make it highly compatible with recycling. Production of aluminum from scrap has a number of advantages. This article discusses the technology for the recovery, sorting, and remelting of aluminum. It describes the collection and acquisition of aluminum scrap in transportation, packaging, electrical and electronic, and building and construction sectors. The article reviews the technologies used to accomplish comminution for aluminum: shearing, knife shredding, and swing-hammer shredding. It provides a description of the devices used in scrap sorting, such as hand sorting, air classification, magnetic separation, eddy-current separation, heavy-media separation, and sensor-based sorting. The article also describes thermal processing, refining and casting, and dross processing of aluminum. It provides information on reverberatory and electric furnaces used for melting aluminum.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003222
EISBN: 978-1-62708-199-3
... and Procedures for Small Operations A major step in scrap processing is size reduction. Large items must be cut to simplify handling, increase density, and to enable them to be charged into a furnace. For small-scale scrap processing, gas-cutting, plasma-arc, or carbon-arc torches are the tools...
Abstract
This article focuses on the recycling of metals including iron and steel, stainless steel, superalloys, nickel, aluminum, copper, precious metals, lead, magnesium, tin, titanium, and zinc. It provides information on the identification and sorting of scrap metals and discusses the equipment and procedures used for small-scale and large-scale scrapping operations.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001118
EISBN: 978-1-62708-162-7
... 9th Edition Metals Handbook. The following discussion will concentrate on issues involving scrap preparation and melting. In the early days of the aluminum industry, recycling consisted entirely of hand charging unused parts of castings (for example, risers or cut-to-fit scrap pieces...
Abstract
Many nonferrous metals, including aluminum, nickel, copper, and others, are among the few materials that do not degrade or lose their chemical or physical properties in the recycling process. As a result, these metals can be recycled an infinite number of times. This article focuses on the recycling of nonferrous alloys, namely, aluminum, copper, magnesium, tin, lead, zinc, and titanium, providing details on the sources, consumption and classification of scrap, and the technological trends and developments in recycling.
Book Chapter
Cast Iron Melting Furnaces
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006337
EISBN: 978-1-62708-179-5
... requirements generally charge, melt down, refine, and superheat the iron in batches. This practice is commonly referred to as cold melting. Such installations use electric induction, electric arc, or air (reverberatory) furnaces for melting a properly proportioned charge of white iron returns, scrap iron...
Abstract
Various types of furnaces have been used for cast iron melting. In terms of tonnage, the primary melting methods used by iron casting facilities are cupola and induction furnaces. This article describes the operation and control principles of cupola furnace. It discusses the advantages of specialized cupolas such as cokeless cupola and plasma-fired cupola. Melting in iron foundries is a major application of induction furnaces. The article describes the operations of two induction furnaces: the channel induction furnace and the induction crucible furnace. It explains the teapot principle of pressure-actuated pouring furnaces and provides information on the effect of pouring magnesium-treated melts.
Book Chapter
Production of Gray Iron Castings
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006329
EISBN: 978-1-62708-179-5
... to change over the lifetime of the facility, so it is necessary to build in some flexibility in design to accommodate for an unknown future need. Fig. 4 Charge yard arrangement showing scrap delivery, storage bins, weigh hoppers, and charging bucket. Coke and limestone are usually stored in covered...
Abstract
Foundry practices critical to the production of cast irons include melting, alloying, molten metal treatment, pouring, and the design of feeding systems (gating and risering) to allow proper filling of the casting mold. This article reviews these production stages of iron foundry casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the castability factors, such as fluidity, shrinkage, and resistance, of gray iron. Typical cupola charge compositions and the final analyses for class 30 and class 40 gray iron castings are presented in a table. The article describes the induction melting and arc furnace melting used in gray iron foundries. It also reviews the inoculation methods such as stream inoculation and mold inoculation, of gray iron.
Book Chapter
Operation of Induction Furnaces for Steel and Non-iron Materials
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005905
EISBN: 978-1-62708-167-2
... furnace: melting selected scrap and casting A second application case of the use of an induction furnace in steel works to produce structural steel is shown in Fig. 5 in diagram form. The crucible furnace works as a melting unit in addition to an electric arc furnace. Melt charges of 100 tons...
Abstract
Crucible furnaces, as compared to electric arc furnaces, are increasingly deployed in various melting practices due to their environmental and workplace friendliness and their process benefits. This article focuses on the application of induction crucible furnaces for melting and pouring operations in small-and medium-sized steel foundries, including aluminum, copper, and zinc industries. It also provides information on the process engineering benefits of melting and pouring operations.
Image
The major components of a dryer used to preheat induction furnace charge ma...
Available to PurchasePublished: 01 December 2008
Fig. 10 The major components of a dryer used to preheat induction furnace charge material. Integrated scrap preheat process combines (1) weigh hoppers, (2) preheat hood, (3) material transfer mechanism, and (4 and 5) furnace-charging apparatus into a single automated process.
More
Book Chapter
Steelmaking Practices and Their Influence on Properties
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003091
EISBN: 978-1-62708-199-3
..., oxygen is blown at supersonic velocity with the help of a water-cooled lance inserted through the mouth of the vessel. The vessel is lined with basic refractories like tar-bonded dolomite or carbon magnesite. The charge consists of steel scrap, hot metal, and flux—all charged through the mouth...
Abstract
This article presents a detailed account on the process flow, composition, alternative sources, and the advancement of ironmaking, steelmaking and secondary steelmaking practices. Some steels, such as bearing steels, heat-resistant steels, ultrahigh strength missile and aircraft steels, and rotor steels have higher quality requirements and tighter composition control than plain carbon or ordinary low-alloy steels. The production of special-quality steels requires vacuum-based induction or electric remelting and refining capabilities. The article explores the types and characteristics of various steel manufacturing processes, such as ingot casting, continuous casting, and hot rolling. It provides an outline of specialized processing routes of producing ultralow plain carbon steels, interstitial-free steels, high strength low-alloy steels, ultrahigh strength steels, stainless steels, and cold-rolled products, and briefly explains the analytical techniques for liquid steels.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006318
EISBN: 978-1-62708-179-5
... and limiting their concentration, often at very low levels, can significantly degrade casting performance. The primary source of these tramp elements is from the steel scrap, pig iron, and cast iron returns used as major charge materials for cast iron melting. Other trace elements are intentionally added...
Abstract
During the melting and solidification of cast irons, certain trace (minor) elements may unintentionally accumulate to an extent that they have a detrimental effect on the microstructure of castings. This article discusses the residual elements, trace elements, and tramp elements in cast irons. Elements that influence the matrix structure of cast irons are commonly classified as ferrite-promoting elements or pearlite-promoting elements. The article describes the effects of minor elements on microstructure and properties of cast irons. It discusses the use of a combination of tools to control the effects of minor elements on the structure and properties of cast irons. The article concludes with information on allowable levels of trace and tramp elements in cast irons.
1