Skip Nav Destination
Close Modal
By
Walter Riggs, Dana Rucker
By
K.S. Ravichandran, A.K. Vasudevan
By
Wayne Reitz, James Rawers
By
Kurt F.J. Heinrich, Dale E. Newbury
By
Horst Czichos, Mathias Woydt
By
Samuel W. Glass, III
Search Results for
science
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 3662
Search Results for science
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003006
EISBN: 978-1-62708-200-6
... Abstract This article outlines the fundamentals of polymer science and emphasizes the aspects that are necessary and useful to applications of engineering plastics. The basic structure of polymers influences the properties of both polymers and the plastics made from them. An understanding...
Abstract
This article outlines the fundamentals of polymer science and emphasizes the aspects that are necessary and useful to applications of engineering plastics. The basic structure of polymers influences the properties of both polymers and the plastics made from them. An understanding of this basic structure permits the engineers to understand which polymers may be acceptable for a certain application, and which may not. There are various possible classification schemes for polymers. Typical classification categories include polymerization process, chemical elements that make up the monomer, or crystalline versus noncrystalline structure. The article describes the various aspects of chemical structure that are important to an understanding of polymer properties and, thus, affect eventual end uses. It discusses different types of names assigned to polymers. The article details the aspects of polymer structure and examines the properties of polymers and the way they are altered by structure.
Book Chapter
Abbreviations and Symbols: Cast Iron Science and Technology
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006352
EISBN: 978-1-62708-179-5
...ASM Handbook, Volume 1A, Cast Iron Science and Technology Copyright # 2017 ASM InternationalW D.M. Stefanescu, editor All rights reserved DOI: 10.31399/asm.hb.v01a.a0006352 www.asminternational.org Abbreviations and Symbols a activity, interatomic spacing, crack length dc direct current A area DCRP...
Book
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.9781627082075
EISBN: 978-1-62708-207-5
Book
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.9781627081795
EISBN: 978-1-62708-179-5
Image
Main simulation models used in materials science and related length and tim...
Available to PurchasePublished: 01 December 2009
Fig. 19 Main simulation models used in materials science and related length and time scales. DFT, density functional theory; MD, molecular dynamics; MC, Monte Carlo. Source: Ref 177
More
Image
Web of Science results for publications on the tribology of diamondlike car...
Available to PurchasePublished: 31 December 2017
Fig. 9 Web of Science results for publications on the tribology of diamondlike carbon coatings
More
Image
Schematic presentation of (a) the Materials Science Laboratory and (b) the ...
Available to Purchase
in Thermophysical Properties of Liquids and Solidification Microstructure Characteristics—Benchmark Data Generated in Microgravity
> Metals Process Simulation
Published: 01 November 2010
Fig. 8 Schematic presentation of (a) the Materials Science Laboratory and (b) the electromagnetic levitator reaching temperatures up to 2200 K (3500 °F). Courtesy of EADS Astrium, Germany
More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006650
EISBN: 978-1-62708-213-6
... Abstract This article focuses on the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in materials science, especially for inorganic and organic polymer solids. It begins with a discussion on the general principles of NMR, providing information on nuclear spin...
Abstract
This article focuses on the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in materials science, especially for inorganic and organic polymer solids. It begins with a discussion on the general principles of NMR, providing information on nuclear spin descriptions and line narrowing and spectral resolution and describing the impact of magnetic field on nuclear spins and the factors determining resonance frequency. This is followed by a description of various systems and equipment necessary for NMR spectroscopy. A discussion on general sampling for solid-state NMR, sample-spinning requirements, and extraneous signals is then included. Various factors pertinent to accurate calibration of the NMR spectrum are also described. The article provides information on some of the parameters both beneficial and problematic for processing NMR data. It ends with a description of the applications of NMR in glass science and ceramics.
Book Chapter
Introduction to Testing and Characterization
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005728
EISBN: 978-1-62708-171-9
... borrowed from other materials science disciplines. This article focuses on commonly used testing and characterization methods: metallography, image analysis, hardness, tensile adhesion testing, corrosion testing, x-ray diffraction, non-destructive testing, and powder characterization. It provides...
Abstract
Materials resulting from thermal spray processes are often different from their wrought, forged, and cast counterparts. Assessing the usefulness of thermal spray coatings requires understanding, developing, and using appropriate testing and characterization methods that are generally borrowed from other materials science disciplines. This article focuses on commonly used testing and characterization methods: metallography, image analysis, hardness, tensile adhesion testing, corrosion testing, x-ray diffraction, non-destructive testing, and powder characterization. It provides information on how the materials themselves respond to the various test methods. The article focuses on the test methods themselves, including those test parameters that can be varied and the influence of each on the results obtained.
Book Chapter
Fracture Resistance of Structural Alloys
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002379
EISBN: 978-1-62708-193-1
... Abstract Fracture mechanics is a multidisciplinary engineering topic that has foundations in both mechanics and materials science. This article summarizes the microstructural aspect of fracture resistance in structural materials. It provides a discussion on basic fracture principles...
Abstract
Fracture mechanics is a multidisciplinary engineering topic that has foundations in both mechanics and materials science. This article summarizes the microstructural aspect of fracture resistance in structural materials. It provides a discussion on basic fracture principles and schematically illustrates the mechanism of crack propagation. The article describes the fracture resistance of high-strength steels, aluminum alloys, titanium alloys, and composites such as brittle matrix-ductile phase composites and metal-matrix composites. It also lists the effects of microstructural variables on fracture toughness of steels, aluminum alloys, and titanium alloys.
Book Chapter
Heat-Transfer Equations
Available to PurchaseSeries: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005993
EISBN: 978-1-62708-166-5
... Abstract This article is a comprehensive collection of formulas, tables, and analytical solutions, addressing hundreds of heat-transfer scenarios encountered in science and engineering. With detailed explanations and dimensioned drawings, the article demonstrates how to set up and solve real...
Abstract
This article is a comprehensive collection of formulas, tables, and analytical solutions, addressing hundreds of heat-transfer scenarios encountered in science and engineering. With detailed explanations and dimensioned drawings, the article demonstrates how to set up and solve real-world problems, accounting for material properties, environmental variables, boundary and state conditions, and the primary modes of heat transfer: conduction, convection, and radiation. The article also includes reference data and provides closed-form solutions for common heat-transfer applications such as insulated pipes, cooling fins, radiation shields, and composite structures and configurations.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003708
EISBN: 978-1-62708-182-5
... of statistical inference and addresses the commonly used statistical tools and tests. It describes the science and engineering of materials, including metals, polymers, and ceramics. The article explores the principles of various surface-sensitive techniques and the usefulness and limitations of these techniques...
Abstract
A corrosionist refers to a corrosion engineer, a corrosion technician, a corrosion scientist, a chemist, a physicist, an electrical engineer, a mechanical engineer, a coatings or plastics salesperson, a corrosion consultant, or a plant operator. This article presents an overview of statistical inference and addresses the commonly used statistical tools and tests. It describes the science and engineering of materials, including metals, polymers, and ceramics. The article explores the principles of various surface-sensitive techniques and the usefulness and limitations of these techniques. The techniques are divided into those that provide insight into surface topography and surface structure, and those that provide understanding of chemical nature and identity. The article presents a list of web sites and print media addressing corrosion and related topics in five different areas: societies and associations; corrosion standards, specifications, and recommended practices; sources of corrosion information; corrosion databases and data compilations; and other web resources.
Book Chapter
Materials Basics for the Corrosionist
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003711
EISBN: 978-1-62708-182-5
... Abstract This article presents an overview of the science and engineering of materials along with suitable definitions, descriptions, and examples for better understanding for corrosionists with limited field knowledge. It begins with a detailed description of various categories of engineering...
Abstract
This article presents an overview of the science and engineering of materials along with suitable definitions, descriptions, and examples for better understanding for corrosionists with limited field knowledge. It begins with a detailed description of various categories of engineering materials and moves into the discussion of physical properties of materials, such as the phases, strength, conductivity, and wear. The article describes the methods used in the fabrication of engineering materials and summarizes the materials and their properties in a tabular form. The article concludes with information on material design, materials applications, and materials failure analysis.
Book Chapter
Electron Probe X-Ray Microanalysis
Available to PurchaseSeries: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001768
EISBN: 978-1-62708-178-8
... includes information on the analog and digital compositional mapping of elemental distribution, and describes the strengths and weaknesses of WDS and EDS spectrometers in X-ray mapping. It also outlines the application of EPMA for solving various problems in materials science. electron probe X-ray...
Abstract
Electron probe microanalysis (EPMA) makes it possible to combine structural and compositional analysis in one operation. This article describes the basic concepts of microanalysis and the processing of EPMA that involves the measurement of the characteristic X-rays emitted from a microscopic part of a solid specimen bombarded by a beam of accelerated electrons. It provides information on the various aspects of energy-dispersive spectrometry (EDS) and wavelength-dispersive spectrometry (WDS), and elucidates the qualitative analysis of the major constituents of EDS and WDS. The article includes information on the analog and digital compositional mapping of elemental distribution, and describes the strengths and weaknesses of WDS and EDS spectrometers in X-ray mapping. It also outlines the application of EPMA for solving various problems in materials science.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003030
EISBN: 978-1-62708-200-6
... Abstract Tribology is the science and technology of interacting surfaces in relative motion or, the study of friction, wear, and lubrication. This article focuses on friction and wear processes that aid in the evaluation and selection of materials, for polymers and some composites used...
Abstract
Tribology is the science and technology of interacting surfaces in relative motion or, the study of friction, wear, and lubrication. This article focuses on friction and wear processes that aid in the evaluation and selection of materials, for polymers and some composites used in friction and wear applications. It provides information on friction, types of wear, and lubrication. The article includes a brief description of the friction and wear test methods, laboratory-scale friction, and wear testing, usually performed either to rank the performance of candidate materials for an application or to investigate a particular wear process. It describes the wear tests conducted with/without abrasives and explains the concept of PV limit (where P is contact pressure and V is velocity). The article concludes with references and tables of friction and wear test data for polymeric materials.
Book Chapter
Introduction to Tribology and Tribological Parameters
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006403
EISBN: 978-1-62708-192-4
... Abstract Tribology is the science and technology of interacting surfaces in relative motion. This article describes in detail the basic structural, operational, and interaction parameters of a tribosystem. The interaction parameters, which characterize the action of the operational parameters...
Abstract
Tribology is the science and technology of interacting surfaces in relative motion. This article describes in detail the basic structural, operational, and interaction parameters of a tribosystem. The interaction parameters, which characterize the action of the operational parameters on the structural components in the system, consist of three important aspects: contact parameters, friction parameters, and wear parameters. These three aspects embody the complex mechanisms and relationships between the constituents of a tribosystem. The article concludes with information on the selection criteria of a material for wear applications.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005438
EISBN: 978-1-62708-196-2
... Abstract This article provides guidelines for the assessment of model quality in materials science and engineering. It discusses the fundamentals of model quality assessment and the calibration of mechanistic material models. The article reviews the considerations for the model verification...
Abstract
This article provides guidelines for the assessment of model quality in materials science and engineering. It discusses the fundamentals of model quality assessment and the calibration of mechanistic material models. The article reviews the considerations for the model verification during software implementation planning to identify suitable programs, software components, and programming languages. It describes the validity tests used in model validation, including boundary-value tests, degenerate problem tests, sensitivity tests, and benchmarking. The article also presents an example of model calibration, verification, and validation for the prediction of martensite start temperature of steels.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005434
EISBN: 978-1-62708-196-2
... phenomena in continuous media and transition regime flows of VPP. It explains the methods used for molecular modeling in computational materials science. The article also presents examples that illustrate multiscale simulations of CVD or PVD processes and examples that focus on sputtering deposition...
Abstract
This article focuses on transport phenomena and modeling approaches that are specific to vapor-phase processes (VPP). It discusses the VPP for the synthesis of materials. The article reviews the basic notions of molecular collisions and gas flows, and presents transport equations. It describes the modeling of vapor-surface interactions and kinetics of hetereogeneous processes as well as the modeling and kinetics of homogenous reactions in chemical vapor deposition (CVD). The article provides information on the various stages of developing models for numerical simulation of the transport phenomena in continuous media and transition regime flows of VPP. It explains the methods used for molecular modeling in computational materials science. The article also presents examples that illustrate multiscale simulations of CVD or PVD processes and examples that focus on sputtering deposition and reactive or ion beam etching.
Book Chapter
Heat-Transfer Equations
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005449
EISBN: 978-1-62708-196-2
... Abstract This article is a comprehensive collection of formulas, tables, and analytical solutions, addressing hundreds of heat-transfer scenarios encountered in science and engineering. It also demonstrates how to set up and solve real-world problems, while accounting for material properties...
Abstract
This article is a comprehensive collection of formulas, tables, and analytical solutions, addressing hundreds of heat-transfer scenarios encountered in science and engineering. It also demonstrates how to set up and solve real-world problems, while accounting for material properties, environmental variables, boundary and state conditions, and the primary modes of heat transfer: conduction, convection, and radiation.
Book Chapter
Guide to Nondestructive Evaluation Techniques
Available to PurchaseSeries: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006438
EISBN: 978-1-62708-190-0
... Abstract This article provides a discussion on general nondestructive evaluation (NDE) science and considerations for specific technique selection. It explains the basic concept of flaw detection and evaluation and probability of detection. The article provides an overview of NDE methods...
Abstract
This article provides a discussion on general nondestructive evaluation (NDE) science and considerations for specific technique selection. It explains the basic concept of flaw detection and evaluation and probability of detection. The article provides an overview of NDE methods with their applications, limitations, and advantages. It includes details on NDE codes, calibration standards, inspection frequency, guidance on how to perform inspections, applicability, and mandatory and nonmandatory practice. The article also provides tips on where to focus inspections in order to align with the likely areas of damage or degradation and a number of other aspects of inspection.
1