Skip Nav Destination
Close Modal
Search Results for
scanning tunneling microscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 91
Search Results for scanning tunneling microscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2005
Fig. 11 (a) 175 nm×175 nm scanning tunneling microscopy topography and (b) (d I /d V )/( I/V ) curves for TiAl after exposure to environment with 100 Langmuir oxygen (1 Langmuir is 10 −6 torr · s) SS, surface state. Source: Ref 71
More
Image
Published: 01 January 2005
Fig. 12 (a) 300 nm×300 nm scanning tunneling microscopy topography and (b) I/V curve for oxidized TiAl after exposure to atmospheric environment. Source: Ref 71
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003710
EISBN: 978-1-62708-182-5
... techniques, namely, optical microscopy, scanning electron microscopy, scanning tunneling microscopy, and atomic force microscopy, are reviewed. The article discusses the principles and applications of chemical identity and composition analysis techniques. These techniques include the energy dispersive X-ray...
Abstract
This article describes the analytical methods for analyzing surfaces for corrosion and corrosion inhibition processes as well as failure analysis based on surface structure and chemical identity and composition. The principles and applications of the surface-structure analysis techniques, namely, optical microscopy, scanning electron microscopy, scanning tunneling microscopy, and atomic force microscopy, are reviewed. The article discusses the principles and applications of chemical identity and composition analysis techniques. These techniques include the energy dispersive X-ray spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002363
EISBN: 978-1-62708-193-1
... emission techniques, ultrasonic methods, eddy current techniques, infrared techniques, exoelectron methods, and gamma radiography. The article explains the microscopy methods used to determine fatigue crack initiation and propagation. These include electron microscopy, scanning tunneling microscopy, atomic...
Abstract
This article describes the test techniques that are available for monitoring crack initiation and crack growth and for obtaining information on fatigue damage in test specimens. These techniques include optical methods, the compliance method, electric potential measurement, and gel electrode imaging methods. The article discusses the magnetic techniques that are primarily used as inspection techniques for detecting fatigue cracks in structural components. It details the principles and operation procedures of the liquid penetrant methods, positron annihilation techniques, acoustic emission techniques, ultrasonic methods, eddy current techniques, infrared techniques, exoelectron methods, and gamma radiography. The article explains the microscopy methods used to determine fatigue crack initiation and propagation. These include electron microscopy, scanning tunneling microscopy, atomic force microscopy, and scanning acoustic microscopy. The article also reviews the X-ray diffraction technique used for determining the compositional changes, strain changes, and residual stress evaluation during the fatigue process.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006012
EISBN: 978-1-62708-172-6
... of nanotechnology and the development of smart coatings have been dependent largely on the availability of analytical and imaging techniques such as Raman spectroscopy, scanning and transmission electron microscopy, atomic force microscopy, and scanning tunneling microscopy. ball milling chemical vapor...
Abstract
Nanotechnology and smart-coating technologies have been reported to show great promise for improved performance in critical areas such as corrosion resistance, durability, and conductivity. This article exemplifies nanofilms and nanomaterials used in coatings applications, including carbon nanotubes, silica, metals/metal oxides, ceramics, clays, buckyballs, graphene, polymers, titanium dioxide, and waxes. These can be produced by a variety of methods, including chemical vapor deposition, plasma arcing, electrodeposition, sol-gel synthesis, and ball milling. The application of nanotechnology and the development of smart coatings have been dependent largely on the availability of analytical and imaging techniques such as Raman spectroscopy, scanning and transmission electron microscopy, atomic force microscopy, and scanning tunneling microscopy.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006633
EISBN: 978-1-62708-213-6
.... scanning tunneling microscope scanning probe microscopy atomic force microscope Overview SINCE THE INTRODUCTION of the scanning tunneling microscope (STM) in 1981 and the atomic force microscope (AFM) in 1985, many variations of probe-based microscopies, referred to as scanning probe microscopes...
Abstract
This article provides an overview of scanning probe microscopes (scanning tunneling microscope and atomic force microscope (AFM)), covering the various operating modes and probes used in these instruments and providing information on AFM instrumentation, applications, and analyses.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005647
EISBN: 978-1-62708-174-0
... photon scanning tunneling microscopy PW projection welding PWAA postweld artificial aging PWHT postweld heat treatment PWM pulse width modulation Q&T quenched and tempered R roentgen R a surface roughness in terms of arithmetic average RA rosin fully activated...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.9781627081733
EISBN: 978-1-62708-173-3
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0005663
EISBN: 978-1-62708-173-3
... per square inch absolute Abbreviations and Symbols / 1223 psig gage pressure (pressure relative to ambi- SPA-LEED spot profile analysis-low-energy equals ent pressure) in pounds per square inch electron diffraction = approximately equals ~ not equal to PSTM photon scanning tunneling microscopy SPC...
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002353
EISBN: 978-1-62708-193-1
..., scanning tunneling microscopy has been used successfully to track the initiation of microcracks during fatigue deformation of silver single crystals ( Ref 30 ). In order to minimize tip artifacts, the tip must be sharp with a small opening angle. Also, imaging conditions must be chosen to minimize tip...
Abstract
Fatigue damage in metals is caused by the simultaneous action of cyclic stress, tensile stress, and plastic strain. This article details the fundamental aspects of the stages of the fatigue failure process. These include cyclic plastic deformation prior to fatigue crack initiation, initiation of one or more microcracks, propagation or coalescence of microcracks to form one or more microcracks, and propagation of one or more macrocracks.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001347
EISBN: 978-1-62708-173-3
... for understanding interfacial behavior come from studies conducted at the atomic level (for example, using scanning tunneling microscopy, transmission electron microscopy, first principles energy band calculations, and embedded atom potential calculations) with appropriate correlations to both micromechanics...
Abstract
Solid-state welding (SSW) processes are those that produce coalescence of the faying surfaces at temperatures below the melting point of the base metal being joined without the addition of brazing or solder filler metal. This article discusses the fundamentals of welding and joining materials via the application of a nonmelting process. The specific processes usually associated with the nonmelting process are discussed.
Book Chapter
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006183
EISBN: 978-1-62708-175-7
... electron microscopy mm microinch STM scanning tunneling microscopy ms micrometer (micron) Sv sievert n microsecond t thickness; time p Poisson s ratio; velocity T Tesla; transverse direction r pi (3.141592) T absolute temperature; temperature; tenacity; total s density; resistivity dispersion...
Image
Published: 15 June 2020
Fig. 5 Bond formation in ultrasonic additive manufacturing. (a) Schematic illustration of head-to-head welding of gold nanowires where one nanowire is caused to approach the other. STM, scanning tunneling microscope. (b) and (c) The motion in (a) is shown in transmission electron microscopy
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0005752
EISBN: 978-1-62708-194-8
... International d'Unites sineh sine hyperbolic S{N signal-to-noise (ratio) S-N stress-number of cycles SPC statistical process control SPF superplastic forming sp gr specific gravity SRIM structural reaction injection molding std standard STEM scanning transmission electron microscopy STM scanning tunneling...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001348
EISBN: 978-1-62708-173-3
... the signal. This condition can be overcome by using scanning tunneling microscopy (STM) or AFM. However, preparation of the surface is extremely difficult, the equipment requires a skilled and trained operator, the data are fundamental, and engineering information is not obtained. The crux of the problem...
Abstract
This article reviews quantifying adhesion, bonding, and interfacial characterization and strength in a solid-state welding process. It discusses metal-metal configurations and provides information on experimental work carried out in measuring the mechanical properties of interfaces based on theoretical analysis. A discussion on the properties affecting adhesion is also provided.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006628
EISBN: 978-1-62708-213-6
...) Surface Structure and Metal Epitaxy by Impact-Collision Ion-Scattering Spectroscopy and Scanning Tunneling Microscopy , Phys. Rev. B , Vol 63 , 2000 , p 035402 10.1103/PhysRevB.63.035402 7. Robinson M.T. and Torrens I.M. , Computer Simulation of Atomic-Displacement Cascades in Solids...
Abstract
This article is a brief account of low-energy ion-scattering spectroscopy (LEIS) for determining the atomic structure of solid surfaces. It begins with a description of the general principles of LEIS. This is followed by a section providing information on the equipment used for LEIS. Various steps involved in the sample preparation, calibration, and data analysis are then discussed. The article concludes with a section on the applications and interpretation of LEIS in material analysis, including discussion on surface structural analysis, layer-by-layer (Frank-van der Merwe) growth, and low-energy atom-scattering spectroscopy.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006675
EISBN: 978-1-62708-213-6
... Abstract This article is an overview of the division Surface Analysis of this volume. The division covers various developed surface-analysis techniques, such as scanning probe and atomic force microscopy. The division focuses on the analysis of surface layers that are less than 100 nm...
Abstract
This article is an overview of the division Surface Analysis of this volume. The division covers various developed surface-analysis techniques, such as scanning probe and atomic force microscopy. The division focuses on the analysis of surface layers that are less than 100 nm. A quick reference summary of surface-analysis methods is presented in this article.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0006515
EISBN: 978-1-62708-200-6
... UNS Unified Numbering System I, s, and v represent liquid, STEM scanning transmission electron UP, UPE unsaturated polyester solid, and vapor, microscopy USM ultrasonic machining o respectively) STM scanning tunneling microscopy UTS ultimate tensile strength an increment; a range; change in STOL short...
Abstract
This article is a compilation of abbreviations, symbols, and tradenames for terms related to the properties, selection, processing, and applications of the most widely used nonmetallic engineering materials.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006670
EISBN: 978-1-62708-213-6
...-ray scattering; OM: optical microscopy; energy dispersive x-ray spectrometry; STM: scanning tunneling microscopy; SPM: scanning probe microscopy; RS: Raman spectroscopy Single-Crystal Semiconductors The starting point for many microelectronic devices is a single-crystal wafer of an elemental...
Abstract
This article introduces various techniques commonly used in the characterization of semiconductors, namely single-crystal, polycrystalline, amorphous, oxide, organic, and low-dimensional semiconductors and semiconductor devices. The discussion covers material classification, fabrication methods, sample preparation, bulk/elemental characterization methods, microstructural characterization methods, surface characterization methods, and electronic characterization methods.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006658
EISBN: 978-1-62708-213-6
... nanometers in diameter. Piezoelectric ceramics were used to control the motion of the probe relative to the sample, and a vibration-isolation system similar to that used in the scanning tunneling microscope was used. In the initial AFM instrument, vertical and horizontal resolution was a few nanometers...
Abstract
This article focuses on laboratory atomic force microscopes (AFMs) used in ambient air and liquid environments. It begins with a discussion on the origin of AFM and development trends occurring in AFM. This is followed by a section on the general principles of AFM and a comprehensive list of AFM scanning modes. There is a brief description of how each mode works and what types of applications can be made with each mode. Some of the processes involved in preparation of samples (bulk materials and those placed on a substrate) scanned in an AFM are then presented. The article provides information on the factors applicable to the accuracy and precision of AFM measurements. It ends by discussing the applications for AFMs in the fields of science, technology, and engineering.
1