Skip Nav Destination
Close Modal
Search Results for
scanning electron microscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 785 Search Results for
scanning electron microscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006876
EISBN: 978-1-62708-387-4
... Abstract This article presumes the reader has a basic understanding of the operation and principles of scanning electron microscopy (SEM). The emphasis of this article is specifically on the application of SEM to the study of metallic and nonmetallic fracture surfaces, where the typical...
Abstract
This article presumes the reader has a basic understanding of the operation and principles of scanning electron microscopy (SEM). The emphasis of this article is specifically on the application of SEM to the study of metallic and nonmetallic fracture surfaces, where the typical objectives of SEM examination of a fracture surface may include the following: identification of characteristic fracture features to aid in identifying fracture mechanism(s); characterization of material anomalies that may have influenced the fracture; qualitative or semiquantitative chemical analysis of component material(s); and qualitative or semiquantitative analysis of deposits or corrosion products on or near fracture surfaces.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
... preparation scanning electron microscope scanning electron microscopy THE SCANNING ELECTRON MICROSCOPE (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. Compared to the light microscope, it expands the resolution range by more than 1...
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006668
EISBN: 978-1-62708-213-6
... the details of SEM-based techniques and specialized SEM instruments. It ends with example applications of various SEM modes. scanning electron microscopy electron beam-sample interaction Overview Introduction A scanning electron microscope (SEM) is a type of instrument that magnifies...
Abstract
This article provides detailed information on the instrumentation and principles of the scanning electron microscope (SEM). It begins with a description of the primary components of a conventional SEM instrument. This is followed by a discussion on the advantages and disadvantages of the SEM compared with other common microscopy and microanalysis techniques. The following sections cover the critical issues regarding sample preparation, the physical principles regarding electron beam-sample interaction, and the mechanisms for many types of image contrast. The article also presents the details of SEM-based techniques and specialized SEM instruments. It ends with example applications of various SEM modes.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003755
EISBN: 978-1-62708-177-1
... Abstract This article outlines the beam/sample interactions and the basic instrumental design of a scanning electron microscopy (SEM), which include the electron gun, probeforming column (consisting of magnetic electron lenses, apertures, and scanning coils), electron detectors, and vacuum...
Abstract
This article outlines the beam/sample interactions and the basic instrumental design of a scanning electron microscopy (SEM), which include the electron gun, probeforming column (consisting of magnetic electron lenses, apertures, and scanning coils), electron detectors, and vacuum system. It discusses the contrasts mechanisms used for imaging and analyzing materials in the SEM. These include the topographic contrast, compositional contrast, and electron channeling pattern and orientation contrast. Special instrumentation and accessory equipment used at elevated pressures and during the X-ray microanalysis are reviewed. The article also provides information on the sample preparation procedure and the materials applications of the SEM.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
... Abstract The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical...
Abstract
The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple matter to determine the failure mode by the use of an SEM. In cases where the surface is altered after the initial failure, the case may not be so straightforward. The article presents typical examples that illustrate these points. Image dependence on the microscope type and operating parameters is also discussed.
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001835
EISBN: 978-1-62708-181-8
... Abstract Scanning electron microscopy (SEM) has unique capabilities for analyzing fracture surfaces. This article discusses the basic principles and practice of SEM, with an emphasis on its applications in fractography. The topics include an introduction to SEM instrumentation, imaging...
Abstract
Scanning electron microscopy (SEM) has unique capabilities for analyzing fracture surfaces. This article discusses the basic principles and practice of SEM, with an emphasis on its applications in fractography. The topics include an introduction to SEM instrumentation, imaging and analytical capabilities, specimen preparation, and the interpretation of fracture features. SEM can be subdivided into four systems, namely, illuminating/imaging, information, display, and vacuum systems. The article also describes the major criteria and techniques of SEM specimen preparation, and the general features of ductile and brittle fracture modes.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001767
EISBN: 978-1-62708-178-8
... Abstract Scanning electron microscopy (SEM) has shown various significant improvements since it first became available in 1965. These improvements include enhanced resolution, dependability, ease of operation, and reduction in size and cost. This article provides a detailed account...
Abstract
Scanning electron microscopy (SEM) has shown various significant improvements since it first became available in 1965. These improvements include enhanced resolution, dependability, ease of operation, and reduction in size and cost. This article provides a detailed account of the instrumentation and principles of SEM, broadly explaining its capabilities in resolution and depth of field imaging. It describes three additional functions of SEM, including the use of channeling patterns to evaluate the crystallographic orientation of micron-sized regions; use of backscattered detectors to reveal grain boundaries on unetched samples and domain boundaries in ferromagnetic alloys; and the use of voltage contrast, electron beam-induced currents, and cathodoluminescence for the characterization and failure analysis of semiconductor devices. The article compares the features of SEM with that of scanning Auger microscopes, and lists the applications and limitations of SEM.
Image
Published: 01 January 2002
Fig. 20 Scanning electron microscopy. (a) Typical scanning electron microscope used in failure analysis photography. (b) Scanning electron microscope photograph of a fatigue fracture
More
Image
Published: 01 June 2012
Fig. 3 Scanning electron microscopy backscattered electron images of Ti64 samples that were deposited via the LENS system using hatch widths of (a) 0.89 mm (0.035 in.), (b) 1.5 mm (0.06 in.), and (c) 2.0 mm (0.08 in.). The images show three different-sized scales of engineered porosities
More
Image
Published: 01 June 2012
Fig. 9 Backscattered electron scanning electron microscopy image of corrosion products (dark spots) on a stainless steel hypotube. The lower atomic number of the nonmetallic deposit material appears darker than the underlying metal.
More
Image
Published: 01 January 2002
Fig. 1 Scanning electron microscopy photo of the surface of a 300-series stainless steel sample obtained from AES instrument. Field of view, 1 μm
More
Image
in Corrosion Performance of Stainless Steels, Cobalt, and Titanium Alloys in Biomedical Applications
> Corrosion: Environments and Industries
Published: 01 January 2006
Fig. 1 Scanning electron microscopy images of typical microstructures of metallic biomaterials. (a) 316L stainless steel. Backscattered electron (BE) image showing grains and twins within grains. Polishing scratches are also evident. 1500×. (b) Cast Co-Cr-Mo alloy (ASTM F75). BE image showing
More
Image
Published: 01 January 2006
Fig. 7 Scanning electron microscopy image of type 310 (UNS S31000) stainless steel after 3 high temperature/downtime corrosion cycles. Details of the labeled layers are given in the text. Original magnification: 500×
More
Image
Published: 01 January 2006
Fig. 8 Scanning electron microscopy image and elemental maps of scale on 310 (UNS S31000) stainless steel after 17,000 h exposure in a syngas cooler. (a) Backscattered electron image. (b) Oxygen map. (c) Sulfur map. (d) Chlorine map. (e) Chromium map. (f) Iron map distribution
More
Image
Published: 01 December 2004
Fig. 37 Scanning electron microscopy observation of Al-3Cu. (a) Spike probably formed by the last solidification of interdendritic liquid. (b) Deformed spike probably formed by necking of a solid bridge. Source: Ref 27
More
Image
Published: 01 December 2004
Fig. 41 Scanning electron microscopy image of oxide inclusions in aluminum cast samples (fractured surface)
More
Image
Published: 01 December 2004
Fig. 30 Scanning electron microscopy image of surface relief created by the martensitic transformation in a single crystal of ZrO 2 . Source: Ref 32 . Reprinted with permission
More
Image
Published: 31 December 2017
Fig. 9 Scanning electron microscopy observations of nanoscratch morphology using conical diamond indenter between alloy 6 samples manufactured via hot isostatic pressing from powder (HIP) and casting at a maximum of 100 mN (0.02 lbf) ramped up across the scratch length. (a) HIP alloy. (b) Cast
More
Image
Published: 31 December 2017
Fig. 12 Scanning electron microscopy investigation of wear tracks after ball-on-flat sliding wear tests for alloy 6. (a) Cast alloy showing cracked carbides still embedded in the alloy. (b) Hot isostatic pressed alloy where abrasive grooves have removed carbides due to smaller carbide size. (c
More
Image
Published: 31 December 2017
Fig. 20 Scanning electron microscopy images of failure areas after rolling-contact fatigue tests for alloy 6 at 2.2 GPa (0.32 × 10 6 psi) contact stress. (a) Cast alloy. (b) Hot isostatic pressed alloy (from powder form). Reprinted with permission from Y. Hao. Source: Ref 16
More
1