Skip Nav Destination
Close Modal
Search Results for
scanning electron microscopes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 824 Search Results for
scanning electron microscopes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006660
EISBN: 978-1-62708-213-6
... diffraction crystallographic texture Overview AUTOMATED ELECTRON BACKSCATTER DIFFRACTION (EBSD) is a technique that allows the crystallography of a sample to be determined in a suitably equipped scanning electron microscope (SEM). In brief, a prepared specimen that is flat and free from damage...
Abstract
The electron backscatter diffraction (EBSD) technique has proven to be very useful in the measurement of crystallographic textures, orientation relationships between phases, and both plastic and elastic strains. This article focuses on backscatter diffraction in a scanning electron microscope and describes transmission Kikuchi diffraction. It begins with a discussion on the origins of EBSD and the collection of EBSD patterns. This is followed by sections providing information on EBSD spatial resolution and system operation of EBSD. Various factors pertinent to perform an EBSD experiment are then covered. The article further describes the processes involved in sample preparation that are critical to the success or usefulness of an EBSD experiment. It also discusses the applications of EBSD to bulk samples and the development of EBSD indexing methods.
Image
Published: 01 January 2002
Fig. 20 Scanning electron microscopy. (a) Typical scanning electron microscope used in failure analysis photography. (b) Scanning electron microscope photograph of a fatigue fracture
More
Image
Published: 01 January 1987
Fig. 1 Comparison of light microscope (top row) and scanning electron microscope (bottom row) fractographs showing the intergranular fracture appearance of an experimental nickel-base precipitation-hardenable alloy rising-load test specimen that was tested in pure water at 95 °C (200 °F). All
More
Image
Published: 01 January 2002
Fig. 7 Comparison of light microscope (top row) and scanning electron microscope (bottom row) fractographs showing the intergranular fracture appearance of an experimental nickel-base precipitation-hardenable alloy rising-load test specimen that was tested in pure water at 95 °C (200 °F). All
More
Image
Published: 15 January 2021
Fig. 28 Computer-controlled digital microscopic optical scanning electron microscope Z -stack image of exemplar crankshaft fracture with light-emitting diode ring light illumination
More
Image
Published: 15 December 2019
Fig. 5 Scanning electron microscope secondary electron image of pearlite revealed by etching with 4% picral and a test circle superimposed to make a measurement of the mean random spacing of the lamellae
More
Image
Published: 15 December 2019
Fig. 17 Scanning electron microscope (SEM) (backscattered electron [BSE]) image and elemental x-ray intensity maps for Raney nickel, with color overlay for aluminum (red), iron (green), and nickel (blue); E 0 = 15 keV
More
Image
Published: 01 December 1998
Fig. 1 Schematic of a scanning electron microscope. (a) Electron beam produced and focused to a fine spot on sample surface. Scanning coils enable the position of the beam to be rastered across a selected portion of the sample surface. Signals produced by the sample at the point where the beam
More
Image
Published: 30 September 2015
Fig. 2 Scanning electron microscope backscattered electron images showing comparison of (a) spray compacted plus hot worked and (b) hot isostatically pressed plus hot worked cold working HATS containing 2.9% C, 8% Cr, 1.5% Mo, and 10% V
More
Image
Published: 30 September 2015
Fig. 4 Scanning electron microscope backscattered electron images of microstructure of a HSS containing 1.55% C, 4% Cr, 12% W, 5% V, and 5% Co. (a–c) Spray compacted and hot worked. (d–f) Hot isostatically pressed and hot worked. (a) and (d) As annealed. (b) and (e) Austenitized at 1220 °C
More
Image
in Metallography and Microstructures of Precious Metals and Precious Metal Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 54 Scanning electron microscope image in secondary electron mode of 56Pt-24Al-20Ni (at.%) alloy after arc melting and colloidal silica polishing, showing tetragonal ∼Pt 3 Al
More
Image
in Metallography and Microstructures of Precious Metals and Precious Metal Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 60 Scanning electron microscope micrograph in backscattered electron mode of 86Pt-10Al-4Cr (at.%) alloy annealed at 1350 °C (2460 °F) for 96 h, showing a fine mixture of platinum-rich solid solution (light contrast) and ∼Pt 3 Al (dark contrast)
More
Image
in Metallography and Microstructures of Precious Metals and Precious Metal Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 61 Scanning electron microscope micrograph in backscattered electron mode of 84Pt-11Al-2Ru-3Cr alloy annealed at 1350 °C (2460 °F) for 96 h, showing a fine mixture of platinum-rich solid solution (light contrast) and ∼Pt 3 Al (dark contrast)
More
Image
in Metallography and Microstructures of Precious Metals and Precious Metal Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 65 Scanning electron microscope micrograph in secondary electron mode of nominal 20Pd-80Mo (at.%) alloy annealed at 1200 °C (2190 °F) for 1312 h, showing molybdenum-rich body-centered cubic dendrites with palladium-rich face-centered cubic needles (precipitated in the solid state
More
Image
in Metallography and Microstructures of Precious Metals and Precious Metal Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 66 Scanning electron microscope micrograph in secondary electron mode of nominal 60Pd-30Ru-10Mo (at.%) alloy annealed at 1200 °C (2190 °F) for 1345 h, showing ruthenium-rich hexagonal close-packed needles in a palladium-rich face-centered cubic matrix. The smaller needles were
More
Image
in Metallography and Microstructures of Precious Metals and Precious Metal Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 67 Scanning electron microscope micrograph in backscattered electron mode of nominal 70Mo-20Pd-10Ru (at.%) alloy annealed at 1200 °C (2190 °F) for 840 h, showing molybdenum-rich body-centered cubic (dark contrast) and ruthenium-rich hexagonal close-packed (light contrast). 1250×
More
Image
in Metallography and Microstructures of Precious Metals and Precious Metal Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 70 Scanning electron microscope micrograph in secondary electron mode of nominal 28Ru-72Al (at.%) alloy annealed at 1300 °C (2370 °F) for 6.5 h, showing RuAl dendrites surrounded by eutectic comprising RuAl + Ru-rich solid solution
More
Image
in Metallography and Microstructures of Precious Metals and Precious Metal Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 71 Scanning electron microscope micrograph in secondary electron mode of nominal 4Ru-98Al (at.%) alloy as cast, showing primary RuAl 6 needles (light contrast) in a fine eutectic comprising RuAl 6 + Al-rich solid solution (dark contrast)
More
Image
Published: 01 December 2004
Fig. 26 Scanning electron microscope backscattered electron images of investment cast Ti-46Al-8Nb-1B test bars with 30 mm (1.18 in.) diam. Source: Ref 57
More
Image
in Nanoindentation Hardness, Strain-Rate Sensitivity, and Corrosion Response of Additively Manufactured Metals
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 5 (a–e) Scanning electron microscope backscattered electron (BSE) images corresponding to locations 1 to 5 in the schematic that shows the indentation locations on the sectioned sample, respectively, and depicting the different nickel compositions and microstructures. The darker phase
More
1