1-20 of 181 Search Results for

scanning electron microscope-energy dispersive X-ray spectroscopy

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
.... The article ends with a discussion on the applications of x-ray spectroscopy in failure analysis. energy-dispersive spectrometers failure analysis handheld X-ray fluorescence analysis instrumentation scanning electron microscope wavelength-dispersive spectrometers X-ray spectroscopy X-RAY...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
.... These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. atomic force...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003710
EISBN: 978-1-62708-182-5
... techniques, namely, optical microscopy, scanning electron microscopy, scanning tunneling microscopy, and atomic force microscopy, are reviewed. The article discusses the principles and applications of chemical identity and composition analysis techniques. These techniques include the energy dispersive X-ray...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003252
EISBN: 978-1-62708-199-3
... microscopes are equipped with an energy dispersive x-ray detector. The operation and characteristics of EDS detectors are described in the section on x-ray fluorescence spectroscopy in the article “Bulk Elemental Analysis.” This detector and the associated electronics provide a histogram of the x-ray...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006126
EISBN: 978-1-62708-175-7
... and scanning Auger microscope with regard to top surface analysis. Comparison summary of signal used in scanning electron beam instruments Table 3 Comparison summary of signal used in scanning electron beam instruments Signal type Type Energy Source Use X-ray Characteristic (fluorescent...
Image
Published: 01 January 2024
) Energy-dispersive x-ray spectroscopy line scans showing the presence of oxide in the stress-corrosion crack and phosphorus in the grain boundary just ahead of this active crack More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
...); C = crystalline solids Fig. 1 Flow charts of common techniques for characterization of metals and alloys. AES: Auger electron spectroscopy; AFM: atomic force microscopy; COMB: high-temperature combustion; EDS: energy-dispersive x-ray spectroscopy; EFG: elemental and functional group...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006748
EISBN: 978-1-62708-213-6
... of one mag- emitting source, excited by any of various excitation potential (x-ray). The applied netized body for another. See also Curie forms of energy, is dispersed. potential on an x-ray tube required to pro- temperature. Compare with paramagnetism. emulsion calibration curve. The plot of a duce...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001768
EISBN: 978-1-62708-178-8
... microanalysis energy-dispersive X-ray spectrometers microbeam analysis qualitative analysis quantitative analysis scanning electron microscopes wavelength-dispersive X-ray fluorescence spectroscopy Overview Introduction Metallurgy has for many years combined chemical analysis on a macroscopic...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001835
EISBN: 978-1-62708-181-8
... 11. Russ J.C. and Sandborg A.O. in Energy Dispersive X-ray Spectrometry , NBS 604, National Bureau of Standards , 1981 , p 71 12. Barbi N.C. , Electron Probe Microanalysis Using Energy Dispersive X-ray Spectroscopy , PGT, Inc. , 1981 13. Reed S.J.B...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0005586
EISBN: 978-1-62708-170-2
... channeling pattern ECR electron cyclotron resonance E d displacement energy EDM electrical discharge machining EDS energy-dispersive spectrometer EDX energy-dispersive spectroscopy EDXA energy dispersive x-ray analysis EEC erosion-enhanced corrosion...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003534
EISBN: 978-1-62708-180-1
... of surfaces by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Chemical characterization of surfaces by energy-dispersive spectroscopy (EDS) instrumentation, which is commonly a module integrated with modern scanning...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005692
EISBN: 978-1-62708-178-8
... of a photographi- x-radiation or the electron beam in the cally recorded image. analytical transmission electron micro- fluorometric analysis. A method of chemi- scope can be used as the excitation source. cal analysis that measures the fluorescence energy-dispersive spectroscopy (EDS). A See also analytical...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003755
EISBN: 978-1-62708-177-1
..., special SE and BE detectors (gaseous SE detector and gaseous BE detector), which use gas ionization to detect and amplify the signal, are necessary. In addition to the main components of a scanning electron microscope described previously, most instruments are equipped with an energy-dispersive x-ray...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... and any other facets of the techniques that would not be known by the customer. Surface Chemical Analysis Failure investigations where the surface of the subject part is important can include surface chemical analysis techniques such as x-ray photoelectron spectroscopy (XPS), or electron...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001767
EISBN: 978-1-62708-178-8
... probe microanalyzer. Two types of x-ray detectors are used: wavelength-dispersive spectrometers and energy-dispersive spectrometers. Most scanning electron microscopes are currently being equipped with energy-dispersive detectors. The energy-dispersive detector is limited to analysis of elements...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006671
EISBN: 978-1-62708-213-6
... by using x-ray fluorescent analysis or x-ray spectroscopy (XRS), coupled with a scanning electron microscope (SEM) to perform electron probe microanalysis (EPMA). However, this analysis can also be done at submicrometer levels when coupled with a transmission electron microscope (TEM) or analytical...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006652
EISBN: 978-1-62708-213-6
... spectrometry; LEISS: low-energy ion-scattering spectroscopy; MFS: molecular fluorescence spectroscopy; NAA: neutron activation analysis; NMR: nuclear magnetic resonance; OM: optical metallography; RS: Raman spectroscopy; SAXS: small-angle x-ray scattering; SEM: scanning electron microscopy; SIMS: secondary ion...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006639
EISBN: 978-1-62708-213-6
... involved in an XPS process. It shows an energetic x-ray beam impinging on the surface. Due to the high energy of the photons, they eject one or more core electrons. The ejected electrons are collected by the spectrometer and eventually detected by a multichannel analyzer. The process of this interaction...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000600
EISBN: 978-1-62708-181-8
... of the structure, and elemental distribution maps obtained by scanning Auger electron spectroscopy (AES) or energy-dispersive x-ray spectroscopy (EDS) have been included, when appropriate, to enhance the reader's understanding of the fracture. The Atlas also includes five line drawings, two of which are graphs...