Skip Nav Destination
Close Modal
Search Results for
scanning auger microprobe
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 58 Search Results for
scanning auger microprobe
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1986
Fig. 23 Results of a scanning Auger microprobe study performed on a gold-plated stainless steel lead frame. (a) Secondary electron image. (b) Iron Auger image. (c) Oxygen Auger image. (d) Gold Auger image. (e) Nickel Auger image
More
Image
Published: 01 December 1998
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003253
EISBN: 978-1-62708-199-3
... information on the capabilities, typical uses, spatial resolution, elemental analysis detection threshold and precision, limitations, sample requirements, and operating principles of the scanning auger microprobe. electron probe microanalysis scanning auger microprobe scanning electron microscopy...
Abstract
This article describes the operation and capabilities of surface analysis methods of metals, including scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, secondary ion mass spectroscopy, and X-ray photoelectron spectroscopy. It provides information on the capabilities, typical uses, spatial resolution, elemental analysis detection threshold and precision, limitations, sample requirements, and operating principles of the scanning auger microprobe.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003249
EISBN: 978-1-62708-199-3
... microprobe (SAM) … Scanning Auger microprobe (SAM) (a) SEM has not historically been capable of this type of analysis, but recent developments are extending SEM capabilities in this area. (b) Described in the Section “Metallography” in this Handbook. Selection of Materials Characterization...
Abstract
This article provides a general introduction of materials characterization and describes the principles and applications of a limited number of techniques that are most commonly used to characterize the composition and structure of metals used in engineering systems. It briefly describes the classification of materials characterization methods including, bulk elemental characterization, bulk structural characterization, microstructural characterization, and surface characterization. Further, the article reviews the selection of materials characterization methods most commonly used with metals.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001770
EISBN: 978-1-62708-178-8
.... Although AES profiling is often used for thin films, analysis of relatively thick films may require alternate approaches. Auger images and line scans are used to define surface chemical inhomogeneities uniquely. Auger imaging is performed similarly to x-ray imaging in an electron microprobe. A selected...
Abstract
This article describes the principles and applications of Auger electron spectroscopy (AES). It provides information on the instrumentation typically used in the AES, including an electron gun, an electron spectrometer, a secondary electron detector, and an ion gun. The article also describes experimental methods and limitations of the AES, including elemental detection sensitivity, electron beam artifacts, sample charging, spectral peak overlap, high vapor pressure samples, and sputtering artifacts.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000600
EISBN: 978-1-62708-181-8
... 1 … … 17 … 18 Total … 88 162 310 667 111 1343 (a) Total includes phosphorus and sulfur maps obtained in a scanning Auger microprobe ( Fig. 604 and 605 ). (b) Total includes a schematic of a fatigue fracture surface ( Fig. 577 ). (c) Total includes a graph showing...
Abstract
This article provides an overview of how fractographs in this Atlas are organized and presented. It contains a table that lists the distribution content of illustrations for various materials discussed in the Atlas. The causes of fractures for various ferrous and nonferrous alloys and engineered materials are also illustrated.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003252
EISBN: 978-1-62708-199-3
... than those for SEM. Sample preparation is tedious, and only very small portions of the sample can be viewed. Scanning Auger Microscopy Scanning Auger Microscopy can perform microanalyses on low atomic number elements down to lithium (atomic number 3). Analyses originate from very near surface...
Abstract
Microstructural analysis is the combined characterization of the morphology, elemental composition, and crystallography of microstructural features through the use of a microscope. This article reviews three types of the most commonly used electron microscopies in metallurgical studies, namely scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy. It briefly describes the operating principles, instrumentation which includes energy dispersive X-ray detectors, spatial resolution, typical use of the techniques, elemental analysis detection threshold and precision, limitations, sample requirements, and the capabilities of related techniques.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006657
EISBN: 978-1-62708-213-6
... remains the major advantage of AES in a variety of applications. Other names have been used in recognition of the high lateral resolution of AES systems and include scanning Auger microprobe with submicron resolution and scanning Auger nanoprobe with nanometer-level resolution. The electron...
Abstract
This article discusses the basic principles of and chemical effects in Auger electron spectroscopy (AES), covering various factors affecting the quantitative analyses of AES. The discussion covers instrumentation and sophisticated electronics typically used in AES for data acquisition and manipulation and various limitations of AES. Various examples highlighting the capabilities of the technique are also included.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000609
EISBN: 978-1-62708-181-8
... at −100 °C (−150 °F) in a scanning Auger microprobe. At elevated temperatures and low strain rates, this steel (like many other metals) fails intergranularly by grain-boundary cavitation. However, the grain-boundary facet at the center of Fig. 602 (SEM, 300×) is not uniformly cavitated, as revealed...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of ASTM/ASME alloy steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the solidification cracking, creep failure, brittle fracture, fracture by overpressurization, inclusion effect, fatigue crack propagation, ductile fatigue striation, secondary cracking, intergranular fracture, and elevated-temperature fracture of alloy steels used in pressure vessels, steam boiler superheater tubes, and box-girder bridges.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006126
EISBN: 978-1-62708-175-7
.... The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques...
Abstract
This article discusses the capabilities and limitations of various material characterization methods that assist in the selection of a proper analytical tool for analyzing particulate materials. Commonly used methods are microanalysis, surface analysis, and bulk analysis. The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques, such as X-ray powder diffraction, inductively coupled plasma atomic emission spectroscopy, atomic absorption spectroscopy, and atomic fluorescence spectrometry, are also discussed.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001301
EISBN: 978-1-62708-170-2
... surface analysis techniques and their relative frequency of application is shown in Fig. 1 . Fig. 1 Survey of the most important surface analysis techniques. AES (SAM), Auger electron spectroscopy (scanning Auger microscopy). XPS (ESCA), x-ray photoelectron spectroscopy (electron spectroscopy...
Abstract
Coatings and thin films can be studied with surface analysis methods because their inherently small depth allows characterization of the surface composition, interface composition, and in-depth distribution of composition. This article describes principles and examples of common surface analysis methods, namely, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, secondary ion mass spectroscopy, and Rutherford backscattering spectroscopy. It also provides useful information on the applications of surface analysis.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001767
EISBN: 978-1-62708-178-8
... with that of scanning Auger microscopes, and lists the applications and limitations of SEM. Jominy testing optical microscopes scanning electron microscopes scanning electron microscopy X-ray spectrometers Overview Introduction The first commercial scanning electron microscope became available...
Abstract
Scanning electron microscopy (SEM) has shown various significant improvements since it first became available in 1965. These improvements include enhanced resolution, dependability, ease of operation, and reduction in size and cost. This article provides a detailed account of the instrumentation and principles of SEM, broadly explaining its capabilities in resolution and depth of field imaging. It describes three additional functions of SEM, including the use of channeling patterns to evaluate the crystallographic orientation of micron-sized regions; use of backscattered detectors to reveal grain boundaries on unetched samples and domain boundaries in ferromagnetic alloys; and the use of voltage contrast, electron beam-induced currents, and cathodoluminescence for the characterization and failure analysis of semiconductor devices. The article compares the features of SEM with that of scanning Auger microscopes, and lists the applications and limitations of SEM.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003520
EISBN: 978-1-62708-180-1
... to analyze inclusions or corrodents observed on the fracture face. A more recently developed tool is the scanning Auger microprobe, which is capable of analyzing surfaces on an atomic scale. This tool is very useful in analyzing surface films and in detecting impurity segregation that causes temper...
Abstract
This article outlines the basic steps to be followed and the range of techniques available for failure analysis, namely, background data assembling, visual examination, microfractography, chemical analysis, metallographic examination, electron microscopy, electron microprobe analysis, X-ray techniques, and simulations. It also describes the steps for analyzing the data, preparing the report, preservation of evidence, and follow-up on recommendations.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001774
EISBN: 978-1-62708-178-8
... by Auger electron spectroscopy (AES) or x-ray photoelectron spectroscopy (XPS) in this type of instrument, the sample orientation and the ion collection system can also be optimized. These instruments, often called ion microprobes, are designed primarily for quantitative in-depth profiling...
Abstract
In secondary ion mass spectroscopy (SIMS), an energetic beam of focused ions is directed at the sample surface in a high or ultrahigh vacuum (UHV) environment. The transfer of momentum from the impinging primary ions to the sample surface causes sputtering of surface atoms and molecules. This article focuses on the principles and applications of high sputter rate dynamic SIMS for depth profiling and bulk impurity analysis. It provides information on broad-beam instruments, ion microprobes, and ion microscopes, detailing their system components with illustrations. The article graphically illustrates the SIMS spectra and depth profiles of various materials. The quantitative analysis of ion-implantation profiles, instrumental features required for secondary ion imaging, the analysis of nonmetallic samples, detection sensitivity, and the applications of SIMS are also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
... detected using scanning Auger microprobe analysis. The mercury was accidentally introduced into the cylinders during a gas-blending operation through a contaminated blending manifold. Replacement of the contaminated manifold was recommended, along with discontinued use of mercury manometers, the original...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or the fracture stress of a solid metal is reduced by surface contact with another metal in either the liquid or solid form. This article summarizes some of the characteristics of liquid-metal- and solid-metal-induced embrittlement. This phenomenon shares many of these characteristics with other modes of environmentally induced cracking, such as hydrogen embrittlement and stress-corrosion cracking. The discussion covers the occurrence, failure analysis, and service failures of the embrittlement. The article also briefly reviews some commercial alloy systems in which liquid-metal-induced embrittlement or solid-metal-induced embrittlement has been documented and describes some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... indicated that failure occurred intergranularly from the cylinder side. Energy-dispersive spectroscopy analysis indicated the presence of mercury on the fracture surface, and mercury was also detected using scanning Auger microprobe analysis. The mercury was accidentally introduced into the cylinders during...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or fracture stress of a solid metal is reduced by surface contact with another metal in either liquid or solid form. This article summarizes the characteristics of solid metal induced embrittlement (SMIE) and liquid metal induced embrittlement (LMIE). It describes the unique features that assist in arriving at a clear conclusion whether SMIE or LMIE is the most probable cause of the problem. The article briefly reviews some commercial alloy systems where LMIE or SMIE has been documented. It also provides some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006639
EISBN: 978-1-62708-213-6
... superficial gases and contaminations on a sample can be introduced into the analytical chamber. This necessitates that the surface be cleaned and the underlying material, the material of interest, be exposed to a clean environment so that it can be analyzed. The cleaning is accomplished by a scanning ion gun...
Abstract
This article focuses on the principles and applications of X-ray photoelectron spectroscopy (XPS) for the analysis of elemental and chemical composition. The discussion covers the nomenclature, instruments, and specimen preparation process of XPS. Some of the factors pertinent to the calibration of materials for accurate measurements using XPS are provided, along with some aspects of the accuracy in quantitative analysis by XPS. In addition, the article presents examples of how XPS data can be used to solve problems with surface interactions.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... developed techniques, such as “Introduction to Scanning Probe Microscopy” and “Atomic Force Microscopy,” as well as established methods, such as “Auger Electron Spectroscopy,” “Low-Energy Electron Diffraction,” and “Secondary Ion Mass Spectroscopy.” Quick reference summary of surface analysis...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006683
EISBN: 978-1-62708-213-6
... of the background due to the molecular secondary ions is eliminated. Fig. 9 Positive secondary ion mass spectroscopy spectra for an organometallic silicate film deposited on a silicon substrate acquired using a scanning ion microprobe under inert argon bombardment The spectrum indicates the presence...
Abstract
This article focuses on the principles and applications of high-sputter-rate dynamic secondary ion mass spectroscopy (SIMS) for depth profiling and bulk impurity analysis. It begins with an overview of various factors pertinent to sputtering. This is followed by a discussion on the effects of ion implantation and electronic excitation on the charge of the sputtered species. The design and operation of the various instrumental components of SIMS is then reviewed. Details on a depth-profiling analysis of SIMS, the quantitative analysis of SIMS data, and the static mode of operation of time-of-flight SIMS are covered. Instrumental features required for secondary ion imaging are presented and the differences between quadrupole and high-resolution magnetic mass filters are described. The article also reviews the optimum method for analysis of nonmetallic samples and high detection sensitivity of SIMS. It ends with a discussion on a variety of examples of SIMS applications.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
... atomic number 3 (lithium). Auger electron spectroscopy is a highly surface-sensitive analytical technique employed to examine and characterize materials. Similar to SEM, Auger electron spectroscopy (AES) uses a focused electron beam to scan the specimen surface and create a secondary electron image...
1