Skip Nav Destination
Close Modal
By
Brian S. Hayes, Luther M. Gammon
By
William F. Cole, II, Mark S. Forte, Rikard B. Heslehurst
By
Scott Reeve
Search Results for
sandwich structures
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 260
Search Results for sandwich structures
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003388
EISBN: 978-1-62708-195-5
... Abstract A sandwich structure is comprised of layered composite materials formed by bonding two or more thin facings or facesheets to a relatively thick core material. This article describes the sandwich panel failure modes. It tabulates the nomenclature and definitions for loads, geometry...
Abstract
A sandwich structure is comprised of layered composite materials formed by bonding two or more thin facings or facesheets to a relatively thick core material. This article describes the sandwich panel failure modes. It tabulates the nomenclature and definitions for loads, geometry, and material properties. The article illustrates critical strength-check locations for a flat sandwich panel. It discusses the analysis methods formulated for flat rectangular honeycomb panels; curved sandwich panel; and for each of the various sandwich panel failure modes. The article concludes with a discussion on flat panel stability analysis methods.
Book Chapter
Analysis of Honeycomb-Cored Sandwich Structure Composites
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009083
EISBN: 978-1-62708-177-1
... Abstract Honeycomb-cored sandwich panels increase part stiffness at a lower weight than monolithic composite materials. This article illustrates an area of a honeycomb-cored sandwich structure composite cross section that is viewed using transmitted polarized light. This area shows...
Abstract
Honeycomb-cored sandwich panels increase part stiffness at a lower weight than monolithic composite materials. This article illustrates an area of a honeycomb-cored sandwich structure composite cross section that is viewed using transmitted polarized light. This area shows the differences in the constituents and resin intermingling. The article discusses the factors that govern the honeycomb core movement and honeycomb core crush, with illustrations. Some common tests performed on honeycomb composites to characterize the skin-to-core bond strength are the climbing drum peel and flatwise tensile tests. The article concludes with a description on the reasons for core failure, which are analyzed after these tests.
Image
Honeycomb sandwich structure composite cross section (∼1 μm ultrathin secti...
Available to PurchasePublished: 01 December 2004
Fig. 1 Honeycomb sandwich structure composite cross section (∼1 μm ultrathin section) showing differences in the constituents and resin intermingling. Transmitted crossed polarized light with a 530 nm compensator plate. This micrograph and the insets are expanded to 200× magnification. (A–C
More
Image
(a) Micrograph of a honeycomb sandwich structure composite after climbing d...
Available to PurchasePublished: 01 December 2004
Fig. 6 (a) Micrograph of a honeycomb sandwich structure composite after climbing drum peel testing showing areas of the core remaining on the aramid fiber composite facesheet. The microcrack pattern of the composite facesheet was enhanced by the use of DYKEM Steel Red dye, which was applied
More
Image
Failure of a honeycomb-cored sandwich structure composite with areas of poo...
Available to PurchasePublished: 01 December 2004
Fig. 10 Failure of a honeycomb-cored sandwich structure composite with areas of poor fillet formation and inadequate bond strength between the prepreg and film adhesive. Bright-field illumination, 10× objective
More
Image
Published: 01 November 1995
Image
Published: 01 January 2001
Image
Published: 01 January 2001
Image
Published: 01 January 2001
Image
Published: 01 January 2001
Book Chapter
Maintainability Issues
Available to PurchaseBook: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003456
EISBN: 978-1-62708-195-5
... Abstract Maintainability is a function of the durability, damage tolerance, and repairability of a structure. This article discusses the configurations of composite structures, such as sandwich, stiffened-skin, and monolithic structures, used in commercial aircraft composites. It describes...
Abstract
Maintainability is a function of the durability, damage tolerance, and repairability of a structure. This article discusses the configurations of composite structures, such as sandwich, stiffened-skin, and monolithic structures, used in commercial aircraft composites. It describes the considerations for maintainability of the composite structures during the conceptual design phase. Sources of the defects and damage, such as manufacturing defects and in-service defects, are reviewed. The article describes the nondestructive inspection methods that are used in the repair of composite structures to locate damage, characterize the extent of damage, and ensure post-repair quality. It lists suggestions that can be used as design guidelines for adhesive bonding, general composite structure, sandwich structure, material selection, and lightning-strike protection. The article also provides the basic considerations for personnel, facilities, and equipment during maintenance.
Book Chapter
Honeycomb
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003037
EISBN: 978-1-62708-200-6
... the shape of core to fit customer's specific needs. The article provides information on the basic concept of creating sandwich structures and its corresponding aspects like material selection, design guidelines, and structural efficiency. core characteristics design guidelines honeycomb material...
Abstract
Honeycomb is a product consisting of very thin sheets attached to form connecting cells. This article briefly explains the construction, core characteristics, properties, and testing methods of the honeycomb structures. It discusses the special processes carried out in customizing the shape of core to fit customer's specific needs. The article provides information on the basic concept of creating sandwich structures and its corresponding aspects like material selection, design guidelines, and structural efficiency.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003375
EISBN: 978-1-62708-195-5
..., mechanical properties, environmental compatibility, formability, durability, and thermal behavior. The article provides information on the benefits and concepts of a sandwich panel containing lightweight structural cores. lightweight structural cores honeycomb structural cores balsa structural cores...
Abstract
Lightweight structural cores are used on aircrafts to reduce weight and increase payload and fight distance. This article discusses the classification of lightweight structural cores, namely, honeycomb, balsa, and foam. It reviews the four primary manufacturing methods used to produce honeycomb: adhesive bonding and expansion, corrugation and adhesive bonding, corrugation and braze welding, and extrusion. The article describes cell configuration and properties of honeycomb. It discusses the factors influencing specification of structural cores, including materials, size, density, mechanical properties, environmental compatibility, formability, durability, and thermal behavior. The article provides information on the benefits and concepts of a sandwich panel containing lightweight structural cores.
Image
Barely visible impact damage (BVID) and heavy impact damage on a sandwich s...
Available to PurchasePublished: 01 January 2001
Fig. 5 Barely visible impact damage (BVID) and heavy impact damage on a sandwich structure with a honeycomb core
More
Image
Micrograph of fillet separation from a composite facesheet in a honeycomb s...
Available to PurchasePublished: 01 December 2004
Fig. 9 Micrograph of fillet separation from a composite facesheet in a honeycomb sandwich structure composite. The sample was mounted in Rhodamine-B-dyed epoxy casting resin. Slightly uncrossed polarized light, 10× objective
More
Image
Typical applications of adhesive-bonded joints in aircraft. (a) Helicopter ...
Available to PurchasePublished: 01 August 2018
Fig. 2 Typical applications of adhesive-bonded joints in aircraft. (a) Helicopter components. (b) Lockheed C-5A transport plane, with various types of honeycomb sandwich structures totaling 2230 m 2 (24,000 ft 2 ) in area
More
Book Chapter
Introduction to Engineering Mechanics, Analysis, and Design
Available to PurchaseBook: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003376
EISBN: 978-1-62708-195-5
...-of-plane effects Sandwich structure “Bolted and Bonded Joints” discusses considerations necessary to integrate all composite parts in the overall product. The stress concentrations associated with the load transfer at joints are one of the most important areas that must be analyzed...
Abstract
Composite materials offer amazing opportunities for delivering structures that are optimized to meet design requirements. This article provides a summary of the concepts discussed in the articles under the section “Engineering Mechanics, Analysis, and Design” in ASM Handbook, Volume 21: Composites. The section introduces many of the engineering approaches used in composite industry.
Book Chapter
Nondestructive Inspection of Adhesive-Bonded Joints
Available to PurchaseSeries: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006457
EISBN: 978-1-62708-190-0
... inspection of adhesive-bonded joints. adherend defects adhesive-bonded joints bonded structures honeycomb sandwich defects metal-to-metal defects neutron radiography nondestructive inspection repair defects ultrasonic inspection visual inspection X-ray radiography ADHESIVE-BONDED JOINTS...
Abstract
Adhesive-bonded joints are extensively used in aircraft components and assemblies where structural integrity is critical. This article addresses the problem of how to inspect bonded assemblies so that all discrepancies are identified. It describes several inspection techniques and presents drawbacks and limitations of these techniques. Generic flaw types and flaw-producing mechanisms are listed in a table. The article discusses metal-to-metal defects, adherend defects, honeycomb sandwich defects, repair defects, and in-service defects. It reviews the methods applicable to the inspection of bonded structures, including visual inspection, ultrasonic inspection, X-ray radiography, and neutron radiography. The evaluation and correlation of inspection results are also discussed. The article concludes with information on the effects of ultrasonic wave interference in the ultrasonic inspection of adhesive-bonded joints.
Image
Solvent-generated voids in the prepreg skins and fillet areas of a honeycom...
Available to PurchasePublished: 01 December 2004
Fig. 4 Solvent-generated voids in the prepreg skins and fillet areas of a honeycomb sandwich structure composite. (a and b) Bag side. (c) Tool side. Epi-bright-field illumination, 5× objective. In these micrographs, there is evidence of some scratching on the polished surface. This is due
More
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003385
EISBN: 978-1-62708-195-5
... on this topic can be found in the article “Analysis of Sandwich Structures” in this Volume. Computer Codes General-purpose finite element codes are typically used for the evaluation of stability for plates with more general shapes and boundary conditions. Modern finite element codes are usually...
Abstract
This article focuses on the unique characteristics of composites and laminated plates, including orthotropic, anisotropic, and unsymmetric plates. It discusses the stability issues associated with practical, structural laminates based on the finite stack effects and transverse shear stiffness effects. The article presents the study of instability associated with postbuckling behavior and hygrothermal buckling in composite sandwich panels and shell panels.
1