Skip Nav Destination
Close Modal
Search Results for
sand casting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 957 Search Results for
sand casting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006584
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications of Mg sand-casting alloy 520.0. Room-temperature aging characteristics for aluminum alloy 520.0-T4 are illustrated. aging characteristics...
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006586
EISBN: 978-1-62708-210-5
... Abstract Alloy 710.0 is a natural-aging aluminum alloy produced by sand casting and suitable for highly stressed castings. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 7xxx series...
Abstract
Alloy 710.0 is a natural-aging aluminum alloy produced by sand casting and suitable for highly stressed castings. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 7xxx series alloy.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006533
EISBN: 978-1-62708-207-5
... Abstract Sand casting processes are typically classified according to the type of binder present in the molding sand mixture. This article discusses common sand casting processes and design considerations related to shape, gating, feeding, and pattern making methods. It describes...
Abstract
Sand casting processes are typically classified according to the type of binder present in the molding sand mixture. This article discusses common sand casting processes and design considerations related to shape, gating, feeding, and pattern making methods. It describes the composition of sand and binder normally used, and provides information on the aluminum casting alloys produced. The article discusses precision sand casting and sand reclamation, and includes information on health and safety considerations.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006559
EISBN: 978-1-62708-210-5
... Abstract Alloy 295.0 is an Al-Cu-Si alloy suitable for sand casting requiring high strength with ductility and toughness. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and applications...
Abstract
Alloy 295.0 is an Al-Cu-Si alloy suitable for sand casting requiring high strength with ductility and toughness. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and applications of this series alloy. Room-temperature aging characteristics for aluminum alloy 295.0-F, -T4, -T6, and -T7 are also illustrated.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006589
EISBN: 978-1-62708-210-5
... Abstract Alloys 771.0 and 772.0 are high-strength, shock-resistant, aluminum sand-casting alloys that develop a high combination of physical and mechanical properties in the as-cast and room-temperature-aged conditions. This datasheet provides information on key alloy metallurgy, processing...
Abstract
Alloys 771.0 and 772.0 are high-strength, shock-resistant, aluminum sand-casting alloys that develop a high combination of physical and mechanical properties in the as-cast and room-temperature-aged conditions. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of these 7xxx series alloys.
Image
Published: 01 December 2008
Fig. 33 Sand casting, pressure die casting, and squeeze casting of aluminum/fly ash composite. (a) Sump pump cover. (b) Greenlee hydraulic tool handle cast at Eck Industries. (c) Mounting bracket die cast at Eck Industries. (d) Motor mounts cast at Thompson Aluminum
More
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006588
EISBN: 978-1-62708-210-5
... Abstract Alloy 713.0 is an aluminum-based casting alloy that ages at room temperature to provide high-strength sand and permanent-mold castings. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics...
Abstract
Alloy 713.0 is an aluminum-based casting alloy that ages at room temperature to provide high-strength sand and permanent-mold castings. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 7xxx series alloy.
Image
Published: 01 December 2008
Fig. 3 Metal casting simulation. (a) Schematic sand casting configuration. (b) Mesh (five million elements) for casting and cooling channels. (c) Computed local solidification times ranging from 1 to 3000 s. Source: Ref 16
More
Image
Published: 01 December 2009
Fig. 7 Metal casting simulation. (a) Typical sand-casting configuration. (b) Automatically generated mesh (five million elements) for casting and cooling channels ( Ref 78 ). (c) Computed local solidification times, which range from 1 to 3000 s ( Ref 78 )
More
Image
Published: 01 January 1997
Fig. 9 A metal casting simulation. (a) Typical sand-casting configuration. (b) Automatically generated mesh (five million elements) for casting and cooling channels ( Ref 71 ). (c) Computed local solidification times, which range from 1 to 3000s ( Ref 71 )
More
Image
Published: 01 December 2008
Fig. 41 Thin-wall sand casting produced from austenitic stainless steel. ne section of the casting required two revisions in wall thickness to bring rejection rate to an acceptable level. Rejections were 50% with 1.52 mm (0.060 in.) wall, 25% with 1.91 mm (0.075 in.) and 5% with 2.29 mm (0.090 in.).
More
Image
Published: 01 December 2008
Fig. 42 Eight stiffening ribs in this alloy steel green sand casting were originally 2.54 mm (0.100 in.) thick; misruns made all castings produced unacceptable. Increasing thickness of these ribs to 3.18 mm (0.125 in.) almost completely eliminated rejections for misruns.
More
Image
Published: 01 December 2008
Fig. 43 This close-tolerance sand casting, although designed to be cast from 4340 steel, was produced in type 431 stainless because of the foundry's greater experience with stainless steel. Increase in material cost was more than offset by higher percentage of acceptable castings.
More
Image
Published: 01 December 2008
Fig. 44 Alloy steel sand casting that was impractical to produce because its inverted saucer shape contributed to cold shuts and misruns. See text for discussion.
More
Image
Published: 01 December 2008
Fig. 7 Eliminating the cored hole in this sand casting permitted a simple flat parting plane. Previously, a stepped parting plane was required, to permit removal of the core print from the mold.
More
Image
Published: 01 December 2008
Fig. 9 A radius at the junction of a cored hole and a sand casting face requires a shaped core, as in (a). Mismatch could result. Elimination of radius, as in (b), simplifies the core and removes the possibility of mismatch as a result of core shift.
More
Image
Published: 01 December 2008
Fig. 11 An undercut created by an isolated boss on the side of a sand casting requires either a core as in (a) or continuation to a flange as in (b). Absence of a flange as in (c) requires continuation of the boss to the parting line as in (d).
More
Image
Published: 01 December 2008
Fig. 16 Conventional molding of a circular sand casting is shown in (a). A specification requiring the large face to be smooth necessitated placing this face in the drag half of the mold, as shown in (b), to obtain maximum smoothness of surface.
More
Image
Published: 01 December 2008
Fig. 31 By eliminating two cored pockets from this 4330 steel sand casting, a better solidification pattern was established and defects were eliminated.
More
Image
Published: 01 December 2008
Fig. 4 A thin-wall sand casting produced from austenitic stainless steel. One section of the casting required two revisions in wall thickness to bring rejection rate to an acceptable level. Rejections were 50% with 0.060-in. wall, 25% with 0.075-in., and 5% with 0.090-in.
More
1