Skip Nav Destination
Close Modal
Search Results for
salt water corrosion resistance
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 831
Search Results for salt water corrosion resistance
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006691
EISBN: 978-1-62708-210-5
... Abstract The aluminum alloy 4043 is recommended as a filler metal when resistance to salt water corrosion is required, especially when welding such aluminum alloys as 5052, 6061, and 6063. This datasheet provides information on key alloy metallurgy, and processing effects on tensile properties...
Abstract
The aluminum alloy 4043 is recommended as a filler metal when resistance to salt water corrosion is required, especially when welding such aluminum alloys as 5052, 6061, and 6063. This datasheet provides information on key alloy metallurgy, and processing effects on tensile properties of this 4xxx series alloy.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003609
EISBN: 978-1-62708-182-5
... investigators feel that dissolved water enhances the electrochemical corrosion nature of the molten salts. Even though the corrosion mechanism is similar, there are major differences between molten salt and aqueous corrosion. The differences arise mainly from the fact that molten salts are partially...
Abstract
This article discusses two general mechanisms of corrosion in molten salts. One is the metal dissolution caused by the solubility of the metal in the melt. The second and most common mechanism is the oxidation of the metal to ions. Specific examples of the types of corrosion expected for the different metal-fused salt systems are also provided. The metal-fused salt systems include molten fluorides, chloride salts, molten nitrates, molten sulfates, hydroxide melts, and carbonate melts. The article concludes with information on prevention of molten salt corrosion.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001296
EISBN: 978-1-62708-170-2
... resistance of the electrochemical reaction Laboratory Corrosion Tests To get information on the long-time corrosion behavior of parts, accelerated (short-time) tests have been used for decades. The environment used might simulate a humid tropical area, the salty air of a seaside area, a salted road...
Abstract
This article focuses on the testing and typical corrosion behavior of coating-substrate systems in aqueous solutions and humid aggressive atmospheres. It includes a short review of the fundamentals of corrosion, followed by a discussion of specific system behavior, electrochemical and laboratory accelerated tests, and simulated service tests. The article also contains examples of different types of corrosion damage and presents guidelines for improving corrosion resistance.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003139
EISBN: 978-1-62708-199-3
... good corrosion resistance. Fig. 1 Effect of alloying and contaminant metals on the corrosion rate of magnesium as determined by alternate immersion in 3% NaCl solution Figure 2 illustrates the effect of increasing iron, nickel, and copper contamination on the standard ASTM salt spray...
Abstract
This article discusses the effects of heavy metal impurities, environmental factors, the surface condition (such as as-cast, treated, and painted), and the assembly practice on the corrosion resistance of a magnesium or a magnesium alloy part. It provides information on stress-corrosion cracking and galvanic corrosion of magnesium alloys, as well as the surface protection of magnesium assemblies achieved by inorganic surface treatments.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003105
EISBN: 978-1-62708-199-3
... be considered to encompass all corrosion taking place on buried structures. Soil corrosion has been ascribed to low pH, stray currents, reactive chemicals, low resistivity, and bacterial action; however, oxygen and water are considered to be the key factors necessary for corrosion. Soil Characteristics...
Abstract
Corrosion of metals is defined as deterioration caused by chemical or electrochemical reaction of the metal with its environment. This article provides information on corrosion of iron and steel by aqueous and nonaqueous media. It discusses the corrosive environments of carbon and alloy steels, namely atmospheric corrosion, soil corrosion, corrosion in fresh water and seawater. The article describes the corrosion process in concrete, which tends to create conditions that increase the rate of attack. The focus is on the stress-corrosion cracking of steels; an environmentally induced crack propagation that results from the combined interaction of mechanical stress and corrosion reactions. The article tabulates a guide on corrosion prevention for carbon steels in various environments. It also discusses protection methods of steel from corrosion, including coatings, such as temporary protection, cleaning, hot dip coating, electroplating, thermal spray coatings, conversion coatings, thin organic coatings, and inhibitors.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003820
EISBN: 978-1-62708-183-2
... to 150 nm (4 to 6 μin.) thick. Films grown in distilled water for 48 h consisted of an inner cellular layer (0.4 to 0.6 μm, or 0.016 to 0.024 mil, thick) and a platelike outer layer (1.8 to 2.2 μm, or 0.071 to 0.087 mil, thick). The inner layer is assumed to be responsible for corrosion resistance...
Abstract
This article begins with a discussion on the environmental factors that induce corrosion in magnesium alloys. It reviews the factors that determine the severity of different forms of localized corrosion, namely, galvanic corrosion, corrosion fatigue, and stress-corrosion. The article discusses corrosion protection in magnesium assemblies and the protective coating systems used in corrosion protection practices. Protection schemes for specific applications and the production of novel magnesium alloys with improved corrosion resistance are also reviewed. The article concludes with a discussion on the corrosion of bulk vapor-deposited alloys and magnesium-matrix composites.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006499
EISBN: 978-1-62708-207-5
..., namely, salt spray, modified dye stain, acid dissolution, impedance, copper accelerated acetic acid salt spray, high-alkaline resistance, SO 2 fog, and clorox tests. aluminum anodizing sealing hot deionized water sealing hot nickel acetate sealing midtemperature sealing cold sealing...
Abstract
The sealing of the anodized aluminum is a critical process in achieving the durability and extended functionality of anodizing. This article discusses the different methods for sealing the anodic coatings produced by using sulfuric acid, namely, hot deionized water, hot nickel acetate, midtemperature, cold, and dichromate sealing. It reviews the factors that affect seal quality: immersion time, chemistry concentration, temperature, pH, water quality, coating thickness, and contaminants/dye bleeding. The article describes the various tests that are used for determining the quality of the seal, namely, salt spray, modified dye stain, acid dissolution, impedance, copper accelerated acetic acid salt spray, high-alkaline resistance, SO 2 fog, and clorox tests.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003142
EISBN: 978-1-62708-199-3
... Abstract This article discusses corrosion resistance of titanium and titanium alloys to different types of corrosion, including galvanic corrosion, crevice corrosion, stress-corrosion cracking (SCC), erosion-corrosion, cavitation, hot salt corrosion, accelerated crack propagation, and solid...
Abstract
This article discusses corrosion resistance of titanium and titanium alloys to different types of corrosion, including galvanic corrosion, crevice corrosion, stress-corrosion cracking (SCC), erosion-corrosion, cavitation, hot salt corrosion, accelerated crack propagation, and solid and liquid metal embrittlement. A short section discusses the addition of alloys that can improve the corrosion resistance of titanium.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003646
EISBN: 978-1-62708-182-5
... Abstract This article discusses the applications and use of salt spray (fog) testing used to test the resistance of aluminum alloys to exfoliation corrosion. There are two basic types of salt-spray/fog corrosion tests: static condition tests and cyclic condition tests. The article provides...
Abstract
This article discusses the applications and use of salt spray (fog) testing used to test the resistance of aluminum alloys to exfoliation corrosion. There are two basic types of salt-spray/fog corrosion tests: static condition tests and cyclic condition tests. The article provides a discussion of these tests and indicates the significant differences in each type test used in the combination of weathering and corrosion testing procedures. It also provides information on the test specimen preparation for spray (fog) corrosion tests. Industry specific standards for test specimen procedures often reference the ASTM standards as a basis. The article includes various ASTM standards that describe several cleaning procedures used prior to testing. It describes the major components of a corrosion test chamber.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006349
EISBN: 978-1-62708-179-5
...), sulfuric (H 2 SO 4 ), and hydrochloric (HCl) acids as well as acid mine water. Small additions of copper are also made to cast irons to enhance atmospheric-corrosion resistance. Additions of up to 10% are made to some high-nickel-chromium cast irons to increase corrosion resistance. The exact mechanism...
Abstract
Cast irons provide excellent resistance to a wide range of corrosion environments when properly matched with that service environment. This article presents basic parameters to be considered before selecting cast irons for corrosion services. Alloying elements can play a dominant role in the susceptibility of cast irons to corrosion attack. The article discusses the various alloying elements, such as silicon, nickel, chromium, copper, and molybdenum, that enhance the corrosion resistance of cast irons. Cast irons exhibit the same general forms of corrosion as other metals and alloys. The article reviews the various forms of corrosions, such as graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. It discusses the four general categories of coatings used on cast irons to enhance corrosion resistance: metallic, organic, conversion, and enamel coatings.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003220
EISBN: 978-1-62708-199-3
... of stainless steel. This article describes the surface treatment of stainless steels including abrasive blast cleaning, acid pickling, salt bath descaling, passivation treatments, electropolishing, and the necessary coating processes involved. It also describes the surface treatment of heat-resistant alloys...
Abstract
Although stainless steel is naturally passivated by exposure to air and other oxidizers, additional surface treatments are needed to prevent corrosion. Passivation, pickling, electropolishing, and mechanical cleaning are important surface treatments for the successful performance of stainless steel. This article describes the surface treatment of stainless steels including abrasive blast cleaning, acid pickling, salt bath descaling, passivation treatments, electropolishing, and the necessary coating processes involved. It also describes the surface treatment of heat-resistant alloys including metallic contaminant removal, tarnish removal, oxide and scale removal, finishing, and coating processes.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003810
EISBN: 978-1-62708-183-2
... application in environments that demand good corrosion resistance, such as in water, soils, acids, alkalis, saline solutions, organic compounds, sulfur compounds, and liquid metals. Basic Metallurgy of Cast Irons The metallurgy of cast irons is similar to that of steels except that sufficient silicon...
Abstract
This article discusses the five basic matrix structures in cast irons: ferrite, pearlite, bainite, martensite, and austenite. The alloying elements, used to enhance the corrosion resistance of cast irons, including silicon, nickel, chromium, copper, molybdenum, vanadium, and titanium, are reviewed. The article provides information on classes of the cast irons based on corrosion resistance. It describes the various forms of corrosion in cast irons, including graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. The cast irons suitable for the common corrosive environments are also discussed. The article reviews the coatings used on cast irons to enhance corrosion resistance, such as metallic, organic, conversion, and enamel coatings. It explains the basic parameters to be considered before selecting the cast irons for corrosion services.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004132
EISBN: 978-1-62708-184-9
.... , and Latanision R.M. , Corrosion in Supercritical Water Oxidation Systems , Proc. of 12th ICPWS , Sept 1994 ( Orlando, FL ), Begell House , 1995 , p 638 – 643 26. Watanabe Y. , Abe H. , and Daigo Y. , Corrosion Resistance and Cracking Susceptibility of 316L Stainless Steel...
Abstract
Supercritical water oxidation (SCWO) is an effective process for the destruction of military and industrial wastes including wastewater sludge. This article discusses the unique properties of supercritical water and lists the main technological advantages of SCWO. For many waste streams, corrosion continues to be one of the central challenges to the full development of the SCWO technology. The article presents a summary of selected materials exposed to various environments as well as the observed form of corrosion in a table. It also illustrates the necessity to adopt a synergistic approach incorporating feed chemistry control, reactor design modifications, and intelligent materials selection, for mitigating degradation of SCWO systems.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006070
EISBN: 978-1-62708-172-6
...; and leaches minerals from soils. Most ionic material readily dissociates in water, and water itself will ionize slightly into hydrogen and hydroxide ions. If water-soluble salts are present, they will also dissociate in water, significantly increasing the water conductivity. Corrosion of steel in water...
Abstract
Soluble salts on a surface can affect a steel substrate or coating in two principal ways: corrosion acceleration and osmotic blistering. This article provides a detailed discussion on the mechanisms for each of these deleterious effects. It describes the most detrimental anions with regard to corrosion, namely, chlorides, sulfates, and nitrates, and provides information on recognition and testing of the presence of soluble salts. The salt-measurement techniques and commercially available equipment are also described. The article provides information on research regarding tolerable levels of salts beneath coatings. The information shows that there appears to be a threshold limit to the salt contamination that a given coating/coating system can tolerate in a given environment.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003608
EISBN: 978-1-62708-182-5
..., such as a buried metal pipe, some other metal structure, or an electrolyte with low resistance such as salt water. The current then flows to and from that structure and causes accelerated corrosion whenever it leaves a metallic structure and flows into an electrolyte. For example, in a pipeline...
Abstract
Stray-current corrosion is an accelerated form of corrosion caused by externally induced electric current. It can occur in unprotected pipelines and submerged metal structures located near electric power sources or anywhere voltage differences exist. This article describes common scenarios and sources of stray current along with ways to detect it and prevent the type of corrosion it can cause.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003137
EISBN: 978-1-62708-199-3
..., for which superior resistance to corrosion by various types of waters and soils is important Marine applications—most often freshwater and seawater supply lines, heat exchangers, condensers, shafting, valve stems, and marine hardware—in which resistance to seawater, hydrated salt deposits, and biofouling...
Abstract
Copper and copper alloys are widely used in many environments and applications because of their excellent corrosion resistance, which is coupled with combinations of other desirable properties. This article lists the identifying characteristics of the forms of corrosion that commonly attack copper metals as well as the most effective means of combating each. General corrosion, galvanic corrosion, pitting, impingement, fretting, intergranular corrosion, dealloying, corrosion fatigue, and stress-corrosion cracking (SCC) are some forms of corrosion. The article also lists a galvanic series of metals and alloys valid for dilute aqueous solutions, such as seawater and weak acids. It provides useful information on the effects of alloy compositions, selection for specific environments, and atmospheric corrosion of selected copper alloys. The article also tabulates the corrosion ratings of wrought copper alloys in various corrosive media.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004104
EISBN: 978-1-62708-184-9
... of a wastewater treatment plant or construction of new capital improvement projects, a corrosion survey should be performed at the project site. This survey should include soil resistivity testing, chemical analysis of soil and/or water samples, and inspection of any facilities that may already exist...
Abstract
This article provides information on predesign surveys and the various testing procedures associated with wastewater treatment plants. These include soil testing, atmospheric testing, and hydrogen sulfide testing. The primary parameters that influence the production of sulfides within the piping system that transports the wastewater to the treatment facility are discussed. The article describes the corrosion performance of various materials in the soil, fluid, and atmospheric exposures. These include concrete, steel, ductile iron, aluminum, copper, brass, stainless steel, and coatings used for wastewater facilities.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003830
EISBN: 978-1-62708-183-2
... for a specific metal alloy. There is no intrinsically bad test or good test, in a general sense, and every test can be a good test if it generates results relevant to the specific application conditions. Immersion tests are good tests for corrosion in water or solutions. Continuous salt spray may provide a close...
Abstract
Zinc is one of the most used metals, ranking fourth in worldwide production and consumption behind iron, aluminum, and copper. This article commences with an overview of the applications of zinc that can be divided into six categories: coatings, casting alloys, alloying element in brass and other alloys, wrought zinc alloys, zinc oxide, and zinc chemicals. It discusses the corrosion and electrochemical behavior of zinc and its alloys in various environments, particularly in atmospheres in which they are most widely used. The article tabulates the corrosion rates of zinc and zinc coatings immersed in various types of waters, in different solutions in the neutral pH range, and in soils at different geographic locations in the United States. It concludes with information on the forms of corrosion encountered in zinc coatings, including galvanic corrosion, pitting corrosion, and intergranular corrosion.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003675
EISBN: 978-1-62708-182-5
..., the normal saltwater corrosion resistance is only moderately reduced when compared to high-purity magnesium and magnesium-aluminum alloys—0.5 to 0.76 mm/yr (20 to 30 mils/yr) as opposed to less than 0.25 mm/yr (10 mils/yr) in 5% salt spray—but contaminants again must be controlled. The zirconium alloying...
Abstract
This article begins with a discussion on the corrosion characteristics of unalloyed magnesium and two major magnesium alloy systems. It shows the effects of iron and 13 other elements on the saltwater corrosion performance of magnesium in binary alloys with increasing levels of the individual elements. The article illustrates the effect of increasing iron, nickel, and copper contamination on the standard ASTM B 117 salt-spray performance of the die-cast AZ91 test specimens as compared to the range of performance observed for cold-rolled steel and die-cast aluminum alloy 380 samples. It discusses the effect of heat treating and cold working on the corrosion rates of the die-cast AZ91 alloy. The article concludes with a description on the causes of corrosion failures in magnesium alloys.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003809
EISBN: 978-1-62708-183-2
... methods of protecting steels from corrosion using paints: barrier coatings, passivation of the steel surface, and galvanic protection. In barrier protection, the paint film retards the diffusion of water, oxygen, or salts to the steel substrate. In 1952, the permeability of water and oxygen through...
Abstract
This article describes the paint systems generally used to protect steel structures, steel sheet, and bridges from corrosion, and how they deter corrosion. It provides a discussion on the basic design criteria of steel structures for corrosion protection. The article also explains the differences between prepaint and postpaint, and the steps involved in prepaint processing of steel. It presents the selection guideline for paint system evaluation. The advantages of corrosion protection are also discussed.
1