1-20 of 212 Search Results for

salt baths

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005929
EISBN: 978-1-62708-166-5
... Abstract This article provides information on the salt baths used for a variety of heat treatments, including heating, quenching, interrupted quenching (austempering and martempering), case hardening, and tempering. It describes two general types of salt bath systems for steel hardening: the...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003198
EISBN: 978-1-62708-199-3
... Abstract Batch furnaces and continuous furnaces are commonly used in heat treating. This article provides a detailed account of various heat treating equipment and its furnace types, including salt bath equipment (externally heated, immersed-electrode and submerged-electrode furnaces), and...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001225
EISBN: 978-1-62708-170-2
... Abstract Molten salt baths are anhydrous, fused chemical baths used at elevated temperatures for a variety of industrial cleaning applications. This article discusses their applications in paint stripping, polymer removal, casting cleaning, glass removal, and plasma/flame spray removal. It...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001242
EISBN: 978-1-62708-170-2
... and 5 A/dm 2 (20 and 50 A/ft 2 ). Substituting potassium salts for sodium salts in the baths with higher metal concentration, up to 38 g/L (5 oz/gal) copper, can increase the allowable current density to 6 A/dm 2 (60 A/ft 2 ), with the penalty of lowering the cathode efficiency. The Rochelle baths...
Book Chapter

By A. Sato
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001248
EISBN: 978-1-62708-170-2
... amount of zinc oxide or zinc cyanide and slowly add to the bath. Mix until completely dissolved. Instead of zinc salts, the bath may be charged with steel baskets of zinc anode balls that are allowed to dissolve into the solution until the desired metal content is reached. Add an initial 15 g/L (2.0...
Book Chapter

By George B. Rynne
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001251
EISBN: 978-1-62708-170-2
... commercially. These salts must be prepared by the plater using litharge (PbO) and the corresponding fluosilicic or sulfamic acids. Sulfamate baths are subject to decomposition, which produces lead sulfate. The appearance and properties of lead limit its commercial use in...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001247
EISBN: 978-1-62708-170-2
... from the ingestion of cadmium dissolved from containers or from food-handling equipment; and poisoning from the inhalation of fumes of cadmium oxide, if cadmium-plated vessels or food-handling equipment is heated. Acute poisoning has resulted from the ingestion of cadmium salts derived from cadmium...
Book Chapter

By Nabil Zaki
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001257
EISBN: 978-1-62708-170-2
...) Organic additive, g/L (oz/gal) 5–20 (0.66–2.7) pH 5.0–6.0 Temperature, °C (°F) 20–40 (70–100) Anodes Zinc Alkaline baths Zinc oxide, g/L (oz/gal) 10–20 (1.3–2.7) Sodium hydroxide, g/L (oz/gal) 80–150 (10–20) Cobalt salt complex, g/L (oz/gal) 1.0–2.0 (0.1–0.3) Organic...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006256
EISBN: 978-1-62708-169-6
... designs used for heating or heat treating of unalloyed uranium: molten salt baths, inert-atmosphere furnaces, and vacuum furnaces. Finally, it presents procedures that are examples of heat treatment used to meet certain specifications of ultimate tensile strength, yield strength, and elongation...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006276
EISBN: 978-1-62708-169-6
... and work hardening. Finally, the article provides information on the equipment used for the heat treating of copper and copper alloys, including batch-type atmosphere furnaces, continuous atmosphere furnaces, and salt baths. annealing bronzes cold forming copper copper alloys dispersion...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003220
EISBN: 978-1-62708-199-3
... stainless steel. This article describes the surface treatment of stainless steels including abrasive blast cleaning, acid pickling, salt bath descaling, passivation treatments, electropolishing, and the necessary coating processes involved. It also describes the surface treatment of heat-resistant alloys...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003213
EISBN: 978-1-62708-199-3
... describes common cleaning processes, including alkaline, electrolytic, solvent, emulsion, molten salt bath, ultrasonic and acid cleaning as well as pickling and abrasive blasting. It also explains how to select the appropriate process for a given soil type and surface composition. abrasive blast...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
... available commercially. These salts must be prepared by the plater using litharge (PbO) and the corresponding fluosilicic or sulfamic acids. Sulfamate baths are subject to decomposition, which produces lead sulfate. Table 19 Compositions and operating conditions of lead fluoborate baths Bath...
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005932
EISBN: 978-1-62708-166-5
... molten salts for martempering and austempering to small or medium section thicknesses. The quench severity of molten salt baths is generally poor but can be controlled by temperature, agitation, and water content of the salt. Bath temperatures used are a function of the martensite start temperature...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003821
EISBN: 978-1-62708-183-2
... corrosive media include: hydrochloric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrobromic acid, nitric acid, organic acids, salts, seawater, and alkalis. The modes of high-temperature corrosion include oxidation, carburization, metal dusting, sulfidation, nitridation, corrosion by halogens...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003825
EISBN: 978-1-62708-183-2
... article provides a discussion on the mechanism of corrosion resistance and on the behavior of tantalum in different corrosive environments, namely, acids; salts; organic compounds; reagents, foods, and pharmaceuticals; body fluids and tissues; and gases. It contains several tables that summarize the...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003216
EISBN: 978-1-62708-199-3
... Table 3 Examples of electroless copper formulations Low build (tartrate) High build (quadrol) High build (EDTA) Full build (EDTA) Copper salt, as Cu(II) 1.8 g/L 2.2 g/L 2.0 g/L 3.0 g/L 0.028 M 0.035 M 0.031 M 0.047 M Chelate Rochelle salt Quadrol Disodium...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001265
EISBN: 978-1-62708-170-2
... about 4, the use of alkaline plating media necessitates use of a complexing, or chelating, component. Historically, complexing agents for electroless copper baths have almost always fallen into one of the following groups of compounds: Tartrate salts Alkanol amines, such as quadrol (N,N,N′,N...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001249
EISBN: 978-1-62708-170-2
... Comparison of indium plating baths Parameter Bath salt Cyanide Fluoborate Sulfamate Sulfate Throwing power Excellent Good Excellent Poor Quality of plate Excellent Good Excellent Passable Ease of solution analysis Difficult Easy Easy Easy Critical temperature No 21–32...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001264
EISBN: 978-1-62708-170-2
... reduction reaction. Ammonia, hydroxides, or carbonates, however, may also have to be added periodically to neutralize hydrogen. Original electroless nickel solutions were made with the salts of glycolic, citric, or acetic acids. Later baths were prepared using other polydentate acids, including succinic...