Skip Nav Destination
Close Modal
Search Results for
safety factor
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 986 Search Results for
safety factor
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1996
Fig. 13 (a) Scheme of the relation between range R 1 and safety factor SF 1 in the case of homogenous populations. (b) One possible scheme for an inhomogeneous population
More
Image
Published: 01 January 1996
Fig. 14 Safety factor SF 1 varying with range R 1 for 55 data groups combined in one diagram for 1% probability of fracture. Eight random starts; probability function P = ( i − 0.417)/( n + 0.166); transformation function 3 ln ( P ) or Gaussian cumulative normality
More
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 68 (Part 2) (e) Evolution of minimum static safety factor, S 0min , versus raceway material hardness and hardness depth. In this case, the hardness depth should be greater than 3.3 to 3.5 mm (0.13 to 0.14 in.) at 29.8 HRC. CHD, case-hardness depth; SHD, surface-hardness depth. Extracts
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002374
EISBN: 978-1-62708-193-1
... factors for P/M materials are also detailed. carbonitriding case hardening coining fatigue properties fatigue resistance fracture properties fracture resistance microstructure porosity postsintering heat treatment powder metallurgy material repressing resintering safety factor sealing...
Abstract
This article discusses the fracture and fatigue properties of powder metallurgy (P/M) materials depending on the microstructure. It describes the effects of porosity on the P/M processes relevant to fatigue and fracture resistance. The article details the factors determining fatigue and fracture resistance of P/M materials. It reviews the methods employed to improve fatigue and fracture resistance, including carbonitriding, surface strengthening and sealing treatments, shot-peening, case hardening, repressing and resintering, coining, sizing, and postsintering heat treatments. Safety factors for P/M materials are also detailed.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006837
EISBN: 978-1-62708-329-4
... Abstract Because of the tough engineering environment of the railroad industry, fatigue is a primary mode of failure. The increased competitiveness in the industry has led to increased loads, reducing the safety factor with respect to fatigue life. Therefore, the existence of corrosion pitting...
Abstract
Because of the tough engineering environment of the railroad industry, fatigue is a primary mode of failure. The increased competitiveness in the industry has led to increased loads, reducing the safety factor with respect to fatigue life. Therefore, the existence of corrosion pitting and manufacturing defects has become more important. This article presents case histories that are intended as an overview of the unique types of failures encountered in the freight railroad industry. The discussion covers failures of axle journals, bearings, wheels, couplers, rails and rail welds, and track equipment.
Image
Published: 01 January 1996
Fig. 1 Residual strength diagram in terms of load (or force). j , design safety factor; g , safety factor based on residual strength
More
Image
in Elevated-Temperature Properties of Stainless Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 34 Comparison of linear damage rule of creep-fatigue interaction with design envelopes in ASME Code Case N-47 for 304 and 316 stainless steel. Creep-damage fraction = time/time-to-rupture (multiplied by a safety factor). Fatigue-damage fraction = number of cycles/cycles to failures
More
Image
Published: 01 January 1996
Fig. 8 Diagram showing safe and unsafe fatigue zones for cast iron subjected to ranges of alternating stress superimposed on a mean stress. Example point P shows conditions of tensile (positive) mean stress; P ′ shows compressive (negative) mean stress. The safety factor is represented
More
Image
Published: 01 December 2008
Fig. 18 Diagram showing safe and unsafe fatigue zones for cast iron subjected to ranges of alternating stress superimposed on a mean stress. Example point “P” shows conditions of tensile (positive) mean stress; “P′” shows compressive (negative) mean stress. The safety factor is represented
More
Image
Published: 01 January 1990
Fig. 14 Diagram showing safe and unsafe fatigue zones for cast iron subjected to ranges of alternating stress superimposed on a mean stress. Example point P shows conditions of tensile (positive) mean stress; P′ shows compressive (negative) mean stress. The safety factor is represented
More
Image
Published: 31 August 2017
Fig. 28 Diagram showing safe and unsafe fatigue zones for cast iron subjected to ranges of alternating stress superimposed on a mean stress. Example point P shows conditions of tensile (positive) mean stress; P ′ shows compressive (negative) mean stress. The safety factor is represented
More
Image
Published: 01 January 2002
Fig. 1 Failure assessment diagram (R6 curve) as proposed by the United Kingdom Central Electricity Generating Board. SF, safety factor; σ, applied stress; σ y , yield strength; a, crack length; W, panel width
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002432
EISBN: 978-1-62708-194-8
... (however implicit) that demands and capacities do have variations. The statistical nature of design parameters has generally been ignored as shown by efforts to find unique representative values such as minimum guaranteed values, limit loads, etc. The usual approach is to use a safety factor or a worse...
Abstract
Reliability is a measure of the capacity of equipment or systems to operate without failure in the service environment. This article focuses on reliability in design and presents equations governing the instantaneous failure rate, general reliability function, mean time to failure, mean time between failures, and useful life period. The article describes the calculation of reliabilities for series and parallel arrangements of a complex system. It provides a comparison of probabilistic and deterministic design and concludes with a discussion on reliability growth.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002381
EISBN: 978-1-62708-193-1
...). j , design safety factor; g , safety factor based on residual strength In every design a safety factor is used. This factor may be applied in different ways. Usually the safety factor is applied to load. For example, if the maximum anticipated service load is P s , the structure...
Abstract
Fracture control is a systematic process to prevent fracture during operation that depends on the criticality of the component, the economic consequences of the structures being out of service, and the damage that would be caused by a fracture failure. This article describes the key principles of fracture control and reviews the concepts of damage tolerance analysis. It further presents practical guidelines to obtain useful and reasonable answers from damage tolerance analysis. The article concludes with information on fracture mechanics and fatigue design.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002468
EISBN: 978-1-62708-194-8
... Abstract This article provides a schematic illustration of factors that should be considered in component design. It discusses the effect of component geometry on the behavior of materials and groups the main parameters that affect the value of the factor of safety. The article illustrates...
Abstract
This article provides a schematic illustration of factors that should be considered in component design. It discusses the effect of component geometry on the behavior of materials and groups the main parameters that affect the value of the factor of safety. The article illustrates the estimation of probability of failure with an example. It reviews the designing and selection of materials for static strength and stiffness. The article also describes the causes of failure of engineering components, including design deficiencies, poor selection of materials, and manufacturing defects.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003513
EISBN: 978-1-62708-180-1
... Generating Board. SF, safety factor; σ, applied stress; σ y , yield strength; a, crack length; W, panel width If a point describing the state of a component or structure (e.g., point W ) falls below the R6 curve ( Fig. 1 ), the structure is considered to be safe. A point falling on or above the R6...
Abstract
Optimized modeling of fracture-critical structural components and connections requires the application of elastic-plastic fracture mechanics. Such applications, however, can require sophisticated analytical techniques such as crack tip opening displacement (CTOD), failure assessment diagram (FAD), and deformation plasticity failure assessment diagram (DPFAD). This article presents the origin and description of FAD and addresses R6 FAD using J-integral. It details the fracture criteria of BS 7910. The factors to be considered during the use of FAD and the applications of FAD are also reviewed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
... techniques. One of the key factors in properly performing a failure analysis is keeping an open mind while examining and analyzing the evidence to foster a clear, unbiased perspective of the failure. Collaboration with experts in other disciplines is required in certain circumstances to integrate...
Abstract
This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input and information, people interviews, laboratory investigations, stress analysis, and fracture mechanics analysis. The article concludes with information on the categories of failure and failure prevention.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... to incorporate a margin or factor of safety. However, after a design is realized and evolves, the actual margin may not be carefully reevaluated. That is, the actual factor of safety may be much less than anticipated. A good example of this concept was the August 2007 collapse of the Interstate 35W bridge...
Abstract
This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different levels, followed by a discussion on the role of failure analysis and the appreciation of quality assurance and user expectations. Systematic analysis of equipment failures reveals physical root causes that fall into one of four fundamental categories: design, manufacturing/installation, service, and material, which are discussed in the following sections along with examples. The tools available for failure analysis are then covered. Further, the article describes the categories of mode of failure: distortion or undesired deformation, fracture, corrosion, and wear. It provides information on the processes involved in RCA and the charting methods that may be useful in RCA and ends with a description of various factors associated with failure prevention.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003514
EISBN: 978-1-62708-180-1
... components to design for appropriate levels of safety. Computational resources are becoming less of an impediment through enhancements in computational algorithms and computer efficiency. Factor of safety approaches may not give the desired reliability or may lead to overdesigned structures...
Abstract
This article describes the historical background, uncertainties in structural parameters, classifications, and application areas of probabilistic analysis. It provides a discussion on the basic definition of random variables, some common distribution functions used in engineering, selection of a probability distribution, the failure model definition, and a definition of the probability of failure. The article also explains the solution techniques for special cases and general solution techniques, such as first-second-order reliability methods, the advanced mean value method, the response surface method, and Monte Carlo sampling. A brief introduction to importance sampling, time-variant reliability, system reliability, and risk analysis and target reliabilities is also provided. The article examines the various application problems for which probabilistic analysis is an essential element. Examples of the use of probabilistic analysis are presented. The article concludes with an overview of some of the commercially available software programs for performing probabilistic analysis.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006448
EISBN: 978-1-62708-190-0
... associated with radiography. There are two main aspects of safety: monitoring radiation dosage and protecting personnel. The article summarizes the major factors involved in both and discusses the operating characteristics of X-ray tubes. It describes the various methods of controlling scattered radiation...
Abstract
Radiography is the process or technique of producing images of a solid material on a paper/photographic film or on a fluorescent screen by means of radiation particles or electromagnetic waves of short wavelength. This article reviews the general characteristics and safety principles associated with radiography. There are two main aspects of safety: monitoring radiation dosage and protecting personnel. The article summarizes the major factors involved in both and discusses the operating characteristics of X-ray tubes. It describes the various methods of controlling scattered radiation: use of lead screens; protection against backscatter and scatter from external objects; and use of masks, diaphragms, collimators, and filtration. The article concludes with a discussion on image conversion media, including recording media, lead screens, lead oxide screens, and fluorescent intensifying screens.
1