1-20 of 192 Search Results for

sacrificial protection

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006049
EISBN: 978-1-62708-172-6
...Abstract Abstract The use of zinc in corrosion-protective coatings is due to its higher galvanic activity relative to that of steel. Pure zinc dust provides the best sacrificial protection to steel in a galvanic couple. Zinc-rich coatings can be subcategorized according to the type of binder...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001250
EISBN: 978-1-62708-170-2
...Abstract Abstract A tin deposit provides sacrificial protection to copper, nickel, and many other nonferrous metals and alloys. Tin also provides good protection to steel. Tin can be deposited from either alkaline or acid electrolytes. This article explains the compositions and operating...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005709
EISBN: 978-1-62708-171-9
... for corrosion protection. Depending on their relationship to the substrate material (often steel) in the galvanic series ( Fig. 1 ), these coatings can be either cathodic (noble), anodic (active or sacrificial), or neutral. Of these, the least used are the neutral coatings, such as alumina, chromia, or sprayed...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004107
EISBN: 978-1-62708-184-9
... protection corrosion resistance electroplating steel structures thermal spray process sacrificial coating hot dipping aluminum coating zinc coatings A SACRIFICIAL COATING applied to a steel substrate can add 20 years or more of life to the substrate, depending on its thickness and composition...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003808
EISBN: 978-1-62708-183-2
...Abstract Abstract From the standpoint of corrosion protection of iron and steel, metallic coatings can be classified into two types: noble coatings and sacrificial coatings. This article focuses on hotdipped zinc, aluminum, zinc-aluminum alloy and aluminum-zinc alloy coatings. It discusses...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003832
EISBN: 978-1-62708-183-2
...Abstract Abstract This article provides a general technical description of thermal spray coatings used for corrosion protection in atmospheric and aqueous environments. It further discusses two basic coating approaches of corrosion protection, namely, the sacrificial coating of thermal spray...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004109
EISBN: 978-1-62708-184-9
...Abstract Abstract Cathodic protection (CP) is an electrochemical means of corrosion control widely used in the marine environment. This article discusses two types of CP systems: impressed current systems and sacrificial anode (passive) systems. It describes the anode materials used...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003697
EISBN: 978-1-62708-182-5
... and types of cathodic protection as well as their power sources and design considerations. The criteria for the cathodic protection and types of materials used in sacrificial anodes and impressed-current anodes are also discussed. The article provides examples selected for familiarizing the design engineer...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003709
EISBN: 978-1-62708-182-5
...Abstract Abstract This article presents common conventions and definitions in corrosion, electrochemical cells, cathodic protection (CP), electricity, and oxidation. Evans diagrams for impressed current CP in neutral or basic environment and galvanic or sacrificial CP, in both neutral or basic...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001012
EISBN: 978-1-62708-161-0
.... The order of magnitude of this throwing power is nominally about 3.2 mm ( 1 8 in.), although this can vary significantly with the type of atmosphere. Nevertheless, galvanized parts exposed outdoors have remained rust free for many years, and the two basic reasons are the sacrificial protection...
Book Chapter

By Nabil Zaki
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001257
EISBN: 978-1-62708-170-2
... potentials from their alloying elements. Alloys of zinc, for example, can be designed to maintain anodic protection to steel, but remain less electrochemically active than pure zinc. Thus, a zinc alloy coating can still be sacrificial to steel components, but corrodes much more slowly than zinc when exposed...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003834
EISBN: 978-1-62708-183-2
... the stainless steel layer, the corrosion barrier mechanism prevents perforation. Localized corrosion of the stainless steel is prevented; the stainless steel is protected galvanically by the sacrificial corrosion of the steel in the metal laminate. Therefore, only a thin pore-free layer is required...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003687
EISBN: 978-1-62708-182-5
... is cathodic to iron, but in the galvanic series (at least in seawater) cadmium is anodic to iron. Thus, if only the emf series were used to predict the behavior of a ferrous metal system, cadmium would not be chosen as a sacrificial protective coating, yet this is the principal use for cadmium plating...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001270
EISBN: 978-1-62708-170-2
... Resistance Zinc coatings protect steel in three ways: Initially, a continuous film of zinc at the surface of steel serves as a barrier to separate the steel from the environment. At voids in the coating, such as scratches and cut edges, the zinc behaves as a sacrificial anode to provide...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005714
EISBN: 978-1-62708-171-9
... is secured to an outer panel by a metal fold or hem. The potential placement of supplemental zinc protection in the vicinity of the hem is illustrated. Because the duration of galvanic protection by a sacrificial metal such as zinc on steel is linearly proportional to the amount of sacrificial metal...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006027
EISBN: 978-1-62708-172-6
... surface to protect it from corrosion. An overlayer can do one of the following: isolate the metal from a corrosive environment (barrier coating), provide galvanic sacrificial protection, or inhibit corrosion by the use of passivating pigments. The other common types of overlayers that can be used...
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006035
EISBN: 978-1-62708-172-6
... steel also prevent the corrosion of steel substrates. This phenomenon is referred to as sacrificial protection. Level I, II, and III coatings and linings within the nuclear plant may be exposed to a variety of chemicals. In the case of Level I coatings, a LOCA event would trigger the activation...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003607
EISBN: 978-1-62708-182-5
... as barrier coatings over a more reactive metal. Galvanic corrosion of the substrate can occur at pores, damage sites, and edges in the noble metal coating. Sacrificial metal coatings provide cathodic protection of the more noble base metal, as in the case of galvanized steel or Alclad aluminum. Cathodic...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004113
EISBN: 978-1-62708-184-9
... the anode and the cathode through the electrolyte (soil) and returns through an external circuit. System characteristics are compared in Table 3 . Cathodic protection system characteristics Table 3 Cathodic protection system characteristics   Galvanic (sacrificial) Impressed current...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003672
EISBN: 978-1-62708-182-5
... hand, the metal with the higher corrosion potential undergoes a negative shift in potential, causing it to support additional cathodic reaction and thus to corrode less. The principles of galvanic corrosion can be and often are used as means of corrosion protection. In this case, a sacrificial metal...