1-20 of 566 Search Results for

rupture ductility

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002349
EISBN: 978-1-62708-193-1
... to determine the cause of cracking or crack growth. This article discusses the macroscopic and microscopic basis of understanding and modeling fracture resistance of metals. It describes the four major types of failure modes in engineering alloys, namely, dimpled rupture, ductile striation formation, cleavage...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
...) failures are recognized by local ductility and multiplicity of intergranular cracks ( Fig. 4 ). However, creep deformation of engineering significance can also occur before intergranular fracture initiates. Stress-rupture data (log stress versus log time to failure) typically show an inflection when...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... for interpreting and understanding creep behavior. Generally, creep (distortion) failures are recognized by local ductility and multiplicity of intergranular cracks ( Fig. 5 ). However, creep deformation of engineering significance can also occur before intergranular fracture initiates. Stress-rupture data...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001048
EISBN: 978-1-62708-161-0
.... For temperatures above 480 °C (900 °F), the design process must include other properties such as creep rate, creep-rupture strength, creep-rupture ductility, and creep-fatigue interaction. Mechanical data of various steels at elevated temperatures are available in the ASTM data series (DS) listed in Table 2...
Image
Published: 01 January 2005
Fig. 11 Stages in the dimpled rupture mode of ductile fracture. (a) Void initiation at hard particles. (b) Void growth. (c) Void linking More
Image
Published: 01 January 2005
Fig. 14 Stages in the dimpled rupture mode of ductile fracture. (a) Void initiation at hard particles. (b) Void growth. (c) Void linking More
Image
Published: 31 August 2017
Fig. 15 Typical stress-rupture properties of high-nickel heat-resistant ductile iron More
Image
Published: 01 January 2000
Fig. 10 Typical creep and creep rupture curves for polymers. (a) Ductile polymers. (b) Brittle polymers More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001035
EISBN: 978-1-62708-161-0
... contain 0.5 to 1.0% Mo for enhanced creep strength, along which chromium contents between 0.5 and 9% for improved corrosion resistance, rupture ductility, and resistance against graphitization. Small additions of carbide formers such as vanadium, niobium, and titanium may also be added for precipitation...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005342
EISBN: 978-1-62708-187-0
...Abstract Abstract This article discusses the visual and microscopic characteristics of fractures of cast alloys. These fractures include ductile rupture, transgranular brittle fracture, intergranular fracture, fatigue, and environmentally induced fracture. The article also describes the factors...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003550
EISBN: 978-1-62708-180-1
.... It illustrates how surface degradation of a plain strain tension specimen alters the ductile brittle transition in polyethylene creep rupture. The article concludes with information on the effects of temperature on polymer performance. creep rupture ductile brittle transition environmental stress...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... by hardness check or destructive testing, chemical analysis • Loading direction may show failure was secondary • Short-term, high-temperature, high-stress rupture has ductile appearance (see creep) • Load exceeded the dynamic strength of the part • Check for proper alloy and processing as well as proper...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003263
EISBN: 978-1-62708-176-4
...Abstract Abstract Torsion tests can be carried out on most materials, using standard specimens, to determine mechanical properties such as modulus of elasticity in shear, yield shear strength, ultimate shear strength, modulus of rupture in shear, and ductility. This article discusses...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... was secondary• Short-term, high-temperature, high-stress rupture has ductile appearance (see creep) • Load exceeded the dynamic strength of the part• Check for proper alloy and processing as well as proper toughness, grain size• Loading direction may show failure was secondary or impact induced• Low...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
.... The article explains the failure of pressure vessels with emphasis on stress-corrosion cracking, hydrogen embrittlement, brittle and ductile fractures, creep and stress rupture, and fatigue with examples. brittle fracture composite creep rupture ductile fracture fabrication failure analysis...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006266
EISBN: 978-1-62708-169-6
... resistance Al, Cr, Y, La, Ce Improve hot corrosion resistance La, Th Sulfidation resistance Cr, Co, Si Improves creep properties B, Ta Increases rupture strength B (a) Grain-boundary refiners B, C, Zr, Hf Facilitates working … Retard γ′ coarsening Re Carbide formation MC...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003291
EISBN: 978-1-62708-176-4
... of tubular components and multiaxial testing methods. multiaxial stress creep creep rupture tubular component effective stress effective strain elastic stress distribution steady-state creep stress multiaxial creep ductility multiaxial testing thermal stress DESIGN OF PRESSURIZED...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000603
EISBN: 978-1-62708-181-8
..., 84 Typical fracture surface morphologies for an annealed ferritic ductile iron. Composition: 3.6% C, 2.2% Si, 0.3% Mn, 0.7% Ni, 0.2% Mo (same as in Fig. 76 , 77 , 78 , 79 , 80 , 81 , and 82 ). Fig. 83 : Dimpled rupture (ductile fracture) at room temperature. SEM, 800×. Fig. 84 : Quasi...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005335
EISBN: 978-1-62708-187-0
... such as σ (sigma) and Laves phases. High stacking fault density tends to increase strength and wear resistance but can reduce tensile and stress-rupture ductility. In order of effectiveness, the solid-solution hardening elements are tantalum, tungsten, niobium, and molybdenum, followed by zirconium...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000601
EISBN: 978-1-62708-181-8
...; intergranular fracture; cleavage fracture; notch-impact fracture; oxide inclusions and blowholes; ductile rupture; impact fracture and tensile-test fracture surfaces; fatigue striations; and crack initiation and propagation of pure irons. cleavage fracture ductile fracture fractograph grain boundaries...