Skip Nav Destination
Close Modal
Search Results for
rough grinding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 676
Search Results for rough grinding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009073
EISBN: 978-1-62708-177-1
... Abstract Rough grinding and polishing of specimens are required to prepare fiber-reinforced composite samples for optical analysis. This article discusses the consumables, process variables, and the equipment that influence the sample preparation procedure. It describes the hand and automated...
Abstract
Rough grinding and polishing of specimens are required to prepare fiber-reinforced composite samples for optical analysis. This article discusses the consumables, process variables, and the equipment that influence the sample preparation procedure. It describes the hand and automated grinding methods. The article summarizes the rough and final polishing steps for both hand and automated techniques. Common artifacts that may be created during grinding and polishing steps of composite samples are reviewed. These include scratches, fiber pull-out, matrix smears, streaks, erosion of different phases, and fiber and sample edge rounding and relief.
Image
Published: 01 December 1998
Image
Published: 01 January 1989
Fig. 15 Floorstand rough grinding of a casting using a zirconia-alumina resin bond wheel. Note the pressure bar used to increase the grinding rate.
More
Image
in Thin Section Preparation and Transmitted Light Microscopy for Fiber-Reinforced Composites[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 5 Photograph of a sacrificial hand vise used for rough and fine grinding the second face of the sample
More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002151
EISBN: 978-1-62708-188-7
... with information on different types of grinding processes, namely, rough grinding, precision grinding, surface grinding, cylindrical grinding, centerless grinding, internal grinding, and tool grinding. abrasive bonding centerless grinding coolants cylindrical grinding grinding grinding fluids grinding...
Abstract
Metal is removed from the workpiece by the mechanical action of irregularly shaped abrasive grains in all grinding operations. This article discusses three primary components of grinding wheels, namely, abrasive (the cutting tool), bond (the tool holder), and porosity or air for chip clearance and/or the introduction of coolant. It describes the compositions and applications of coated abrasives and types of grinding fluids, such as petroleum-base and mineral-base cutting oils, water-soluble oils, synthetic fluids, semisynthetic fluids, and water plus additives. The article concludes with information on different types of grinding processes, namely, rough grinding, precision grinding, surface grinding, cylindrical grinding, centerless grinding, internal grinding, and tool grinding.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003464
EISBN: 978-1-62708-195-5
... microscopy rough grinding sample preparation transmitted-light microscopy MICROSCOPY is a valuable tool in materials investigations related to problem solving, failure analysis, advanced materials development, and quality control. Microscopy has been used for many decades to provide insight...
Abstract
Microscopy is a valuable tool in materials investigations related to problem solving, failure analysis, advanced materials development, and quality control. This article describes the sample preparation techniques of composite materials. These techniques include mounting, rough grinding, and polishing. The preparation techniques of ultrathin sections are also summarized. The article explains the illumination methods used by reflected light microscopy to view a specimen. These consist of epi-bright-field illumination, epi-dark-field illumination, epi-polarized light, and epi-fluorescence. The article also provides information on transmitted light microscopy.
Image
Published: 01 January 1989
Fig. 5 Schematic of a three-rib thread grinding wheel. A, roughing rib; B, intermediate rib; C, finishing rib. The flattened area (D) is optional and can be used to finish grind the crest of the thread.
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003193
EISBN: 978-1-62708-199-3
..., such as toughness and friability, which can be tailored to specific job requirements. Tough aluminum oxide is used for rough grinding operations. Semifriable aluminum oxide is a general-purpose type. White friable aluminum oxide is used for tool grinding and for heat-sensitive materials; seed-gel, high-purity...
Abstract
In all grinding operations, care must be used in the selection of wheels and abrasive belts to meet finish and tolerance requirements without damaging the workpiece. This article discusses the major aspects of the grinding wheel, including production methods, selection considerations, standard marking systems, abrasives, and bonding types. It compares bonded wheel grinding with abrasive belt grinding. The article reviews the types of grinding fluids and discusses their importance in grinding operations. It describes the specific grinding processes and provides recommendations for grinding and grinding wheels.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001232
EISBN: 978-1-62708-170-2
... selection work material ABRASIVE FINISHING includes many commercial processes, which can be generally classified as rough grinding, precision grinding , or high-precision grinding. The distinctions among these categories are based on the desired material removal rates and the acceptable tolerance...
Abstract
Abrasive finishing is a method where a large number of multipoint or random cutting edges are coupled with abrasive grains as a bond or matrix material for effective removal of material at smaller chip sizes. This article provides a broad overview of the various categories of abrasive products and materials, abrasive finishing processes, and the mechanisms of delivering the abrasives to the grinding or machining zone. Abrasive finishing processes, such as grinding, honing, superfinishing, microgrinding, polishing, buffing, and lapping, are discussed. The article presents a brief discussion on abrasive jet machining and ultrasonic machining. It concludes with a discussion on the four categories of factors that affect the abrasive finishing or machining: machine tool, work material, wheel selection, and operational.
Image
Published: 01 January 1994
Fig. 16 Schematic of backstand grinder having coated abrasive belts for use in off-hand rough grinding operations
More
Image
Published: 01 January 1989
Fig. 16 Front view (a) and side view (b) of a backstand grinder having coated abrasive belts for use in offhand rough grinding operations
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009074
EISBN: 978-1-62708-177-1
... of pressure. The mounted specimen can then be ground and polished as described in the article, “Rough Grinding and Polishing,” in this Volume. Preparation of other metallic honeycomb-cored composites will benefit from this technique as well as thin-walled ribbed composite structures. Fig. 1 Mounted...
Abstract
This article focuses on the sample preparation methods for titanium honeycomb composites, boron fiber composites, and titanium/polymeric composite hybrids. These include mounting, sectioning, grinding, and polishing. The article also provides information on the sample preparation of unstaged and staged prepreg materials for optical analysis.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009076
EISBN: 978-1-62708-177-1
... the Primary-Mount First Surface The same procedures described in the article, “Rough Grinding and Polishing,” are used to grind and polish the samples. This operation can be performed either by using automated grinding/polishing equipment or by hand grinding/polishing. The “first surface...
Abstract
This article describes the various aspects relating to the selection and preparation of ultrathin-section specimens of fiber-reinforced polymeric composites for examination by transmitted light microscopy. It provides information on the contrast-enhancement methods used by transmitted-light microscopy and optimization of microscope conditions. Examples of composite ultrathin sections analyzed using transmitted-light microscopy contrast methods are also presented.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003791
EISBN: 978-1-62708-177-1
... grinding, rough polishing, and etching. The article provides information on the problems associated with specimen preparation. It concludes with a discussion on the various methods of analysis for thermal spray coatings. cleaning etching fine grinding light microscopy microstructural analysis...
Abstract
This article reviews how process variations influence the characteristics of thermal spray coatings. It describes various specimen preparation techniques, which allow accurate microstructural analysis. These techniques include sectioning, cleaning, mounting, planar grinding, fine grinding, rough polishing, and etching. The article provides information on the problems associated with specimen preparation. It concludes with a discussion on the various methods of analysis for thermal spray coatings.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003190
EISBN: 978-1-62708-199-3
... of some machining methods on fatigue strength, and low-stress grinding procedures for steels, nickel-base high-temperature alloys, and titanium alloys. lay direction metal removal operations surface finish surface integrity surface roughness A PART SURFACE has two important aspects...
Abstract
Both surface finish and surface integrity must be defined, measured, and maintained within specified limits in the processing of any product. Surface texture is defined in terms of roughness, waviness, lay, and flaws. This article illustrates some of the designations of surface roughness and the symbols for defining lay and its direction. In addition, it describes the applications of surface integrity, typical surface integrity problems created in metal removal operations, and principal causes of surface alterations produced by machining processes. The article tabulates the effect of some machining methods on fatigue strength, and low-stress grinding procedures for steels, nickel-base high-temperature alloys, and titanium alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006517
EISBN: 978-1-62708-207-5
..., are required for grinding, polishing, buffing, and other mechanical methods of finishing aluminum. Grinding Grinding includes a number of processes that can be generally classified as rough grinding, precision grinding, and high precision abrasive finishing operations (such as polishing and honing...
Abstract
Mechanical finishes usually can be applied to aluminum using the same equipment used for other metals. This article describes the two types of grinding used in mechanical finishing: abrasive belt grinding and abrasive wheel grinding. It reviews the binders and fluid carriers used in buffing, and discusses satin finishing and barrel finishing. It also describes lapping and honing techniques that are of special interest in treating aluminum parts that have received hard anodic coatings. Honing recommendations for aluminum alloys are presented in a table.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002119
EISBN: 978-1-62708-188-7
... average roughness R a Theoretical ratio of sine waves, R q / R a 1.11 Actual ratios of R q / R a for various processes Turning 1.17 to 1.26 Milling 1.16 to 1.40 Surface grinding 1.22 to 1.27 Plunge grinding 1.26 to 1.28 Soft honing 1.29 to 1.48 Hard honing...
Abstract
This article distinguishes between a surface finish and a surface texture. It provides information on the surface integrity technology that describes and controls the many possible alterations produced in a surface layer during manufacture, including their effects on material properties and the performance of the surface in service. The types of surface alterations associated with metal removal practices are described. The article discusses the surface roughness, surface integrity, and produced in manufacturing processes, and mechanical property effects. Surface alterations associated with metal removal practices of traditional and nontraditional machining operations, as well as their effect on the static mechanical properties of materials, are reviewed. Finally, the article provides guidelines for material removal, postprocessing, and inspection.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002188
EISBN: 978-1-62708-188-7
.... The article describes the machining operations performed on nickel alloys, such as turning, planing and shaping, broaching, reaming, drilling, tapping and threading, milling, sawing, and grinding. It provides information on the cutting fluids used in the machining of nickel alloys. The article also analyzes...
Abstract
Nickel-base alloys can be machined by techniques that are used for iron-base alloys. This article discusses the effects of distortion and microstructure on the machinability of nickel alloys. It tabulates the classification of nickel alloys based on machining characteristics. The article describes the machining operations performed on nickel alloys, such as turning, planing and shaping, broaching, reaming, drilling, tapping and threading, milling, sawing, and grinding. It provides information on the cutting fluids used in the machining of nickel alloys. The article also analyzes nontraditional machining methods that are suitable for shaping high-temperature, high-strength nickel alloys. These include electrochemical machining, electron beam machining, and laser beam machining.
Image
Published: 01 December 1998
Fig. 6 Surface characteristics of 4340 steel (quenched and tempered, 50 HRC) produced by grinding. (a) Gentle grinding. Surface roughness: 45 μin. R a . Produced no visible surface alterations. (b) Conventional grinding. Surface roughness: 40 μin. R a . Shows evidence of spotty surface
More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002152
EISBN: 978-1-62708-188-7
... and therefore improve the work surface finish. In most cases, the work surface finish is governed by the highest material removal rate that the CBN wheel is subjected to, which generally occurs during the rough grinding cycle. Therefore, setting the cycle to achieve a short cycle time while maintaining...
Abstract
Superabrasives collectively refer to the diamond and cubic boron nitride (CBN) abrasives used in grinding applications. This article discusses the classification of superabrasive wheels according to a variety of sizes and shapes, construction, concentration, and bond systems. It provides information on the applications of the superabrasive wheels depending on the factors of the grinding system. These factors include machine tool variables, work material, wheel selection, and operational factors. The article describes the methods available for superabrasive wheel truing in production grinding operations, namely, stationary tool, powered, and form truings. It reviews the truing methods, such as truing with abrasive wheels and hard ceramics, for batch production. The article explains practical methods available for dressing CBN wheels, namely, abrasive stick, abrasive-jet, slurry, and high-pressure waterjet dressing. It concludes with information on the conditioning process of the CBN wheel.
1