Skip Nav Destination
Close Modal
By
Ralph S. Shoberg
By
Egbert Baake
By
Joel W. House, Peter P. Gillis
By
Pete Csiszar
By
Philip J. Withers, Michael Preuss
By
Denise Aylor, Bopinder Phull
By
Fred R. Specht
By
Neville Sachs, Neville W. Sachs
Search Results for
rotational capacity test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 618
Search Results for rotational capacity test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Mechanical Testing of Threaded Fasteners and Bolted Joints
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003323
EISBN: 978-1-62708-176-4
... coefficient testing, torque tension testing, locknut testing, and angular ductility and rotational capacity tests. The article reviews the basic methods and fundamental principles for mechanical testing of externally and internally threaded fasteners and bolted joints. The test methods for externally threaded...
Abstract
This article provides an overview of the relationships between torque, angle-of-turn, tension, and friction and explains how they are measured and evaluated. It focuses on the principle, test equipment, procedure, evaluation, and test report of various testing methods, namely, friction coefficient testing, torque tension testing, locknut testing, and angular ductility and rotational capacity tests. The article reviews the basic methods and fundamental principles for mechanical testing of externally and internally threaded fasteners and bolted joints. The test methods for externally threaded fasteners include product hardness, proof load, axial and wedge tension testing of full-sized products, tension testing of machined test specimens, and total extension at fracture testing. Product hardness, proof load, and cone proof-load test are the test methods for internally threaded fasteners. The article concludes with a description of torque-angle signature analysis and the specification of measurement accuracy for torque and clamp force.
Image
Typical fatigue life test specimens. (a) Torsional specimen. (b) Rotating c...
Available to PurchasePublished: 01 January 1996
Fig. 9 Typical fatigue life test specimens. (a) Torsional specimen. (b) Rotating cantilever beam specimen. (c) Rotating beam specimen. (d) Plate specimen for cantilever reverse bending. (e) Axial loading specimen. The design and type of specimen used depend on the fatigue testing machine used
More
Image
Typical fatigue life test specimens. (a) Torsional specimen. (b) Rotating c...
Available to PurchasePublished: 01 December 1998
Fig. 37 Typical fatigue life test specimens. (a) Torsional specimen. (b) Rotating cantilever beam specimen. (c) Rotating beam specimen. (d) Plate specimen for cantilever reverse bending. (e) Axial loading specimen. The design and type of specimen used depend on the fatigue testing machine used
More
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007000
EISBN: 978-1-62708-450-5
... decreased as rotational speed increased. The conclusion was the same, irrespective of the polymer quenchant concentration. Moreover, the redesigned tank can be used more effectively to evaluate cooling capacity than the ASTM D8482 tank, as propeller agitation performed in the symmetrical redesigned...
Abstract
Flow visualization is an important characterization process to not only understand uniformity of the interfacial cooling mechanisms, but also to characterize the overall impact of agitation on the uniformity of the overall cooling process. This article focuses on thermal flow simulation and visualization in the quenching process. The study presents the effect of bubbling, boiling, and breaking the steam film on the heat-transfer coefficient during the agitated quenching process.
Book Chapter
Components, Design, and Operation of Vacuum Induction Crucible Furnaces
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005900
EISBN: 978-1-62708-167-2
.... These alloys allowed the production of rotating engine parts—turbine blades, foils, and discs—that can be operated at high-temperature levels with a reasonable lifetime of the component. In the 1960s, materials researchers identified fracture toughness and low-cycle fatigue (LCF) as the most limiting factors...
Abstract
This article discusses the principle, coil design, types and operation of a vacuum induction furnace. It describes the operation parameters that should be considered during the functioning of the induction furnace.
Book Chapter
Testing Machines and Strain Sensors
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003259
EISBN: 978-1-62708-176-4
... of the electric motor in combination with the design of the gear box transmission. Crosshead speed of hydraulic machines is limited to the capacity of the hydraulic pump to deliver a steady pressure on the piston of the actuator or crosshead. Servohydraulic test machines offer a wider range of crosshead speeds...
Abstract
The article provides an overview of the various types of testing machines: gear-driven or screw-driven machines and servohydraulic machines. It examines force application systems, force measurement, and strain measurement. The article discusses important instrument considerations and describes gripping techniques of test specimens. It analyzes test diagnostics and reviews the use of computers for gathering and reducing data. Emphasis is placed on universal testing machines with separate discussions of equipment factors for tensile testing and compressing testing. The influence of the machine stiffness on the test results is also described, along with a general assessment of test accuracy, precision, and repeatability of modern equipment.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003269
EISBN: 978-1-62708-176-4
... provides information on torsional (rotational shear) tests as well as the basic equipment and setup of torsion testing. Motors, twist and torque transducers, torque sensors, and heating systems as well as the specimen preparation procedure are also discussed. shear testing torsion testing...
Abstract
This article reviews the common methods of shear and multiaxial testing for the evaluation of engineering components such as fasteners and mill products. It discusses shear test methods, including through-thickness tests, in-plane shear tests, and double-notched shear test. The article provides information on torsional (rotational shear) tests as well as the basic equipment and setup of torsion testing. Motors, twist and torque transducers, torque sensors, and heating systems as well as the specimen preparation procedure are also discussed.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006362
EISBN: 978-1-62708-192-4
... and Bearing Types Supplying bearings with externally pressurized gas has the advantage of improving load capacity and stiffness, particularly at low rotational speeds where aerodynamic effects are negligible. It also eliminates free play when the bearing is static, giving precise location of the rotor...
Abstract
This article describes the characteristics of three types of gas bearings, such as aerostatic bearing, precision aerodynamic bearing (PAB), and compliant aerodynamic bearing (CAB). It discusses the applications for aerostatic bearings and advantages in lubricating a bearing with a compressible gas. The article also describes the different types of aerostatic bearings, such as annular thrust bearings and orifice-compensated journal bearings. It presents a discussion on load capacity and stiffness, friction and power loss, and stability and damping of the aerostatic bearings. The article provides a discussion on the types of PAB and CAB. The types include spiral groove annular thrust bearings, cylindrical journal bearings, three-sector journal bearings, tilting-pad journal bearings, and helical-grooved journal bearings. The types of CAB include foil bearings and pressurized-membrane bearings. The article concludes with a description of factors that influence materials selection for gas-lubricated bearings.
Book Chapter
Agitator and Fluid Mixing Fundamentals for Quench Tank Applications
Available to PurchaseSeries: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007007
EISBN: 978-1-62708-450-5
... superior vertical and rotational flow, where the agitation performance can be evaluated using the primary pumping capacity of the agitator ( Eq 8 ) and the working volume to calculate the tank turnover rate. Vertical flow velocity can be evaluated by calculating the superficial velocity (FPM): (Eq 11...
Abstract
The role of a mixer/agitator in quenching applications is to control the mixing environment in order to meet the process criteria. This article provides the basic fundamentals of the sizing of agitators, tank geometry importance, and other considerations for the application of agitators in quench tanks. It also discusses the differing methods for the sizing and selection of agitators for quench tank applications.
Book Chapter
Simulation of Rotational Welding Operations
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005515
EISBN: 978-1-62708-197-9
... is that during DD-RFW, the energy supplied to the rotating part comes from a large-capacity motor, while for IFW, the rotating part is connected to a flywheel. The drive motor is disconnected from the flywheel before the rotating and stationary parts are pushed together, so that energy is supplied to the joint...
Abstract
Friction welding is based on the rapid introduction of heat, causing the temperature at the interface to rise sharply and leading to local softening. This article illustrates the basic principles of direct-drive rotational friction welding and inertia friction welding. Modeling the effective friction response of the materials is central to simulating the welding process. The article discusses a series of distinct frictional stages during continuous drive friction welding. Modeling of the evolution of the thermal field has been an important objective since the early days of rotational friction welding. The article describes analytical thermal models and numerical thermal models for rotational friction welding. It concludes with information on the modeling of residual stresses.
Book Chapter
Evaluating Erosion Corrosion, Cavitation, and Impingement
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003669
EISBN: 978-1-62708-182-5
...) of materials. Laboratory tests used to evaluate erosion, cavitation, and impingement damage on metals include the following ( Ref 3 , 4 , 5 , 6 , 7 , 8 , 9 ): High-velocity flow tests, including venturi tubes, rotating disks, and ducts containing specimens in throat sections High-frequency...
Abstract
Erosion, cavitation, and impingement are mechanically assisted forms of material degradation that often contribute to corrosive wear. This article identifies and describes several tests that are useful for ranking the service potential of candidate materials under such conditions. The tests, designed by ASTM as G32, G73, G75, and G76, define specimen preparation, test conditions, procedures, and data interpretation. The article examines the relative influence of various test parameters on the incubation and intensity of cavitation, including temperature, pressure, flow velocity, and vibration dynamics. It concludes with a discussion on data correlations and the relationship between laboratory results and service expectations.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009013
EISBN: 978-1-62708-185-6
... Abstract Thermomechanical are used to gain insight into the causes of problems that arise during a given thermomechanical process. This article provides examples to demonstrate how significant the parameters were selected for specific tests. It examines the types of problems that can occur...
Abstract
Thermomechanical are used to gain insight into the causes of problems that arise during a given thermomechanical process. This article provides examples to demonstrate how significant the parameters were selected for specific tests. It examines the types of problems that can occur during a thermomechanical process. The article provides information on the thermophysical properties, which include specific heat, coefficient of thermal expansion, thermal conductivity/diffusivity, and density. It concludes with examples that illustrate how the various considerations in testing are successfully used to solve practical thermomechanical processing problems.
Book Chapter
Maintenance of Induction Heat Treating Equipment
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005850
EISBN: 978-1-62708-167-2
... Abstract Hardness testing equipment is important as all results from the induction equipment are graded by the hardness testing equipment. This article includes maintenance tips and points to consider regarding hardness test equipment, power supplies, controls, programmable logic controllers...
Abstract
Hardness testing equipment is important as all results from the induction equipment are graded by the hardness testing equipment. This article includes maintenance tips and points to consider regarding hardness test equipment, power supplies, controls, programmable logic controllers, computer systems, water cooling systems, fixtures and machines, air-operated or pneumatic devices, coils, and quench systems. It also presents simple rules that need to be applied while moving the equipment from one location to another.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006034
EISBN: 978-1-62708-175-7
... some of the developments for PM presses in the last 40 years. Other recent improvements in compaction technology include: Split-die techniques to make multilevel parts having different peripheral contours at different levels Punch rotation capability to facilitate production of helical gears...
Abstract
Powder metallurgy compacting presses usually are mechanically or hydraulically driven, but they can incorporate a combination of mechanically, hydraulically, and pneumatically driven systems. This article provides a comparison of mechanical and hydraulic presses based on the cost, production rate, and machine overload protection. The article lists the classification of powder metallurgy parts based on complexity of shapes as suggested by the Metal Powder Industries Federation, such as Class I parts, Class II parts, Class III parts, and Class IV parts. It describes rigid tooling compaction and details the powder-fill ratio considerations for these classes. The article elaborates on the types of tooling systems and presses used for these classes. Some important factors and components used in designing a tool are also described. Finally, the article considers tool materials, including punches, core rods, and punch clamp rings.
Book Chapter
Failure Analysis of Gears and Reducers
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
... of those shafts are parallel; however, many are at 90° to each other, and there also are relatively uncommon mechanisms where the shafts are at other angles. When a gear rotates, the teeth are acted on by the typical centripetal forces while also being subjected to bending fatigue forces...
Abstract
This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear lubrication, the measurement of the backlash, and the necessary factors for starting the failure analysis. Next, the article explains various gear failure causes, including wear, scuffing, Hertzian fatigue, cracking, fracture, and bending fatigue, and finally presents examples of gear and reducer failure analysis.
Book Chapter
Green Sand Molding
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005243
EISBN: 978-1-62708-187-0
... floor. An effective sand control program should also include a testing program for these four basic ingredients of green sand molds (see the section “Sand System Testing” in this article). Next in importance is the condition of the sand processing equipment and sand system engineering...
Abstract
Green sand molding and chemically bonded sand molding are considered to be the most basic and widely used mold-making processes. This article describes the sand system formulation, preparation, mulling, mold fabrication, and handling of green sand molds. It lists the advantages and disadvantages of green sand molding. The article discusses the primary control parameters for the sand system formulation. It describes two basic types of green sand molds: flask molds and flaskless molds. The article provides a discussion on molding problems, including springback and expansion defects. It considers a variety of sand reclamation systems, including wet washing/scrubbing and thermal-calcining/thermal-dry scrubbing combinations.
Book Chapter
Rotary Forging
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003990
EISBN: 978-1-62708-185-6
... Differences between rotary and radial forging. (a) In rotary forging, the upper die, tilted with respect to the lower die, rotates around the workpiece. The tilt angle and shape of the upper die result in only a small area of contact (footprint) between the workpiece and the upper die at any given time...
Abstract
Radial forging is a hot- or cold-forming process that uses two or more radially moving anvils or dies to produce solid or tubular components with constant or varying cross sections along their lengths. This article focuses on the workpiece configuration, workpiece materials, machines, dies, advantages, and limitations of radial forging. It concludes with a discussion on the applications of radial forging.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001234
EISBN: 978-1-62708-170-2
..., utilizes the sliding movement of an upper layer of workload in the tumbling barrel, as shown in Fig. 1 . The barrel is normally loaded about 60% full with a mixture of parts, media, compound, and water. As the barrel rotates, the load moves upward to a turnover point; then the force of gravity overcomes...
Abstract
Mass finishing normally involves loading components to be finished into a container together with abrasive media, water, and compound. This article focuses on basic mass finishing processes, including barrel finishing, vibratory finishing, centrifugal disc and barrel finishing, spindle finishing, and drag finishing. It describes the various factors considered in selecting the most suitable mass finishing process. The article also provides information on consumable materials, process considerations, safety precautions, and waste disposal of mass finishing processes.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003974
EISBN: 978-1-62708-185-6
... such a test. In off-center loading with 220 tons (or 44% of the nominal capacity) an average ram-bed nonparallelity of 0.0315 mm/cm (0.038 in./ft) was measured in both directions, front-to-back and left-to-right. In comparison, the nonparallelity under unloaded conditions was about 1.7×10 −3 mm/cm (0.002...
Abstract
This article discusses the significant factors in the selection of forging equipment for a particular process. It describes the characteristics of forging hydraulic presses, mechanical presses, screw presses, and hammers. The article discusses the significant characteristics of these machines that comprise all machine design and performance data, which are pertinent to the economic use of the machines, including the characteristics for load and energy, time-related characteristics, and characteristics for accuracy.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006868
EISBN: 978-1-62708-395-9
... of possible materials almost immediately. For example, if the application includes providing a container for some chemical or liquid substance, the designer will immediately think about blow molding or perhaps rotational molding, depending on the capacity required. If the application includes providing...
Abstract
This article presents the benefits of selecting plastics for products to be manufactured. It discusses the four key considerations for plastic part design: material, process, tooling, and design. The article provides a detailed discussion of the development sequence for plastic parts. The basis for the development sequence is twofold: first, to create the best solution for the application, and second, to minimize potential project risks through careful and thoughtful work habits.
1