Skip Nav Destination
Close Modal
Search Results for
root cause analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 707 Search Results for
root cause analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2005
Fig. 14 Root cause failure analysis logic chart called a Why Tree. This failure examines a corrosion-related failure.
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... Abstract This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different...
Abstract
This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different levels, followed by a discussion on the role of failure analysis and the appreciation of quality assurance and user expectations. Systematic analysis of equipment failures reveals physical root causes that fall into one of four fundamental categories: design, manufacturing/installation, service, and material, which are discussed in the following sections along with examples. The tools available for failure analysis are then covered. Further, the article describes the categories of mode of failure: distortion or undesired deformation, fracture, corrosion, and wear. It provides information on the processes involved in RCA and the charting methods that may be useful in RCA and ends with a description of various factors associated with failure prevention.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
... Abstract This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely...
Abstract
This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input and information, people interviews, laboratory investigations, stress analysis, and fracture mechanics analysis. The article concludes with information on the categories of failure and failure prevention.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006827
EISBN: 978-1-62708-329-4
... Abstract Due to the recent requirement of higher integration density, solder joints are getting smaller in electronic product assemblies, which makes the joints more vulnerable to failure. Thus, the root-cause failure analysis for the solder joints becomes important to prevent failure...
Abstract
Due to the recent requirement of higher integration density, solder joints are getting smaller in electronic product assemblies, which makes the joints more vulnerable to failure. Thus, the root-cause failure analysis for the solder joints becomes important to prevent failure at the assembly level. This article covers the properties of solder alloys and the corresponding intermetallic compounds. It includes the dominant failure modes introduced during the solder joint manufacturing process and in field-use applications. The corresponding failure mechanism and root-cause analysis are also presented. The article introduces several frequently used methods for solder joint failure detection, prevention, and isolation (identification for the failed location).
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006874
EISBN: 978-1-62708-387-4
... Abstract Identification of the fracture mechanism is one of the principal responsibilities of a failure analyst and is an important component of any root-cause analysis. This article explores the varied mechanisms responsible for metal fracture, particularly regarding fractography. The behavior...
Abstract
Identification of the fracture mechanism is one of the principal responsibilities of a failure analyst and is an important component of any root-cause analysis. This article explores the varied mechanisms responsible for metal fracture, particularly regarding fractography. The behavior of engineering materials at fracture is based on a large number of interrelated characteristics from the atomic level to the component level. These characteristics range from ductile to brittle at the microscale and macroscale levels. Fundamental relative ductility results from the type of electronic bonding, the crystal structure, and the broader long-range degree of order. It provides detailed discussion on ductile fracture, brittle fracture, mixed fracture, embrittlement, stress-corrosion cracking.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006755
EISBN: 978-1-62708-295-2
... critical thinking failure investigation fault tree analysis root-cause determination ON JANUARY 27, 1967, the crew of the U.S. space mission Apollo I was lost when a fire broke out inside their command module during a simulation run aboard their unfueled Saturn 1B launch vehicle on the launch pad...
Abstract
This article discusses the organization required at the outset of a failure investigation and provides a methodology with some organizational tools. It focuses on the use of problem-solving tools such as a fault tree analysis combined with critical thinking. The discussion covers nine steps to organize a good failure investigation. They are as follows: understand and negotiate goals of the investigation, obtain a clear understanding of the failure, identify all possible root causes, objectively evaluate the likelihood of each root cause, converge on the most likely root cause(s), objectively and clearly identify all possible corrective actions, objectively evaluate each corrective action, select optimal corrective action(s), and evaluate effectiveness of selected corrective action(s). Common problems detrimental to a failure investigation are also covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003519
EISBN: 978-1-62708-180-1
... fundamental purpose of discovering root cause. The purpose of this article is to discuss the organization required at the outset of a failure investigation and to provide a methodology with some organizational tools. The main focus is on the problem-solving tool of fault tree analysis. The main point...
Abstract
This article reviews the most common reasons for failures and the purpose of a failure investigation. It discusses the nine steps for the organization of a good failure investigation. The three basic tools that are helpful in any failure investigation, namely, a fault tree, a failure mode assessment chart, and a technical plan for resolution chart, are reviewed. The article briefly describes failure investigation pitfalls and concludes with information on the other common tools used for failure investigation and root cause determination.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006851
EISBN: 978-1-62708-395-9
... Abstract Failure analysis is an investigative process in which the visual observations of features present on a failed component and the surrounding environment are essential in determining the root cause of a failure. This article reviews the basic photographic principles and techniques...
Abstract
Failure analysis is an investigative process in which the visual observations of features present on a failed component and the surrounding environment are essential in determining the root cause of a failure. This article reviews the basic photographic principles and techniques that are applied to failure analysis, both in the field and in the laboratory. It discusses the processes involved in visual examination, field photographic documentation, and laboratory photographic documentation of failed components. The article describes the operating principles of each part of a professional digital camera. It covers basic photographic principles and manipulation of settings that assist in producing high-quality images. The need for accurate photographic documentation in failure analysis is also presented.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006942
EISBN: 978-1-62708-395-9
... if the product was being misused. A failure analysis of the product is usually required in order to determine the root cause of these types of failures. End of Life Coupled with the failure analysis of the product, an analysis of the product design information and literature can also help to determine...
Abstract
Failure analysis is the process used to determine the cause of a failure. There is no definitive method for performing a failure analysis, and the method chosen is dependent upon the type of failure, the availability of background information, the tools available to perform the analysis, and the skills of the analyst. The information outlined in this article focuses on the general methodology while allowing for case-specific techniques to be utilized along the way. It covers the causes of failure, why a failure analysis is performed, the failure analysis process, the planning of failure analysis investigation, recommendations to prevent the need for a failure analysis, the implementation of product reviews, and forensic standards.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006754
EISBN: 978-1-62708-295-2
... in this article). Other books, such as Ref 1 , can help one learn to recognize incorrect lines of reasoning. The specific levels of failure causes that have been defined by the Failsafe Network include physical, human, latent, and root. Clearly, many involved with failure analysis today (2020) call something...
Abstract
Failure analysis is a process that is performed in order to determine the causes or factors that have led to an undesired loss of functionality. This article is intended to demonstrate proper approaches to failure analysis work. The goal of the proper approach is to allow the most useful and relevant information to be obtained. The discussion covers the principles and approaches in failure analysis work, objectives and scopes of failure analysis, the planning stages for failure analysis, the preparation of a protocol for a failure analysis, practices used by failure analysts, and procedures of failure analysis.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006870
EISBN: 978-1-62708-395-9
... of rubber articles, with numerous accompanying figures, are representative of the four root failure categories. elastomeric materials fractography fracture root cause analysis FRACTOGRAPHY is defined as the study of fracture surfaces with the intention of relating the observed macro...
Abstract
This article examines the concept of fractography as applied to elastomeric rubbery materials. It considers four general categories of physical root failure causes: design defects, material defects, manufacturing defects, and service life anomalies. Examples of real-world failures of rubber articles, with numerous accompanying figures, are representative of the four root failure categories.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003518
EISBN: 978-1-62708-180-1
... analysis today call something a root cause when what they are referring to is a simple physical cause. If failure analysis tasks are performed adequately and with luck, at the end the analyst should be able to take the causes found, show that the failure would have happened the way it did, and also show...
Abstract
Failure analysis is a process that is performed to determine the causes or factors that have led to an undesired loss of functionality. This article describes some of the factors and conditions that might be considered when approaching a failure analysis problem. It focuses on the key principles, objectives, practices, and procedures of failure analysis. The article provides guidelines on the preparation of a protocol for a failure analysis. It also demonstrates the proper approaches to failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... Abstract Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed...
Abstract
Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed parts. It discusses the overall concept of design and describes the role of the materials engineer in the design and materials selection process. The article highlights the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006763
EISBN: 978-1-62708-295-2
... Abstract Failure analysis is an investigative process that uses visual observations of features present on a failed component fracture surface combined with component and environmental conditions to determine the root cause of a failure. The primary means of recording the conditions...
Abstract
Failure analysis is an investigative process that uses visual observations of features present on a failed component fracture surface combined with component and environmental conditions to determine the root cause of a failure. The primary means of recording the conditions and features observed during a failure analysis investigation is photography. Failure analysis photographic imaging is a combination of both science and art; experience and proper imaging techniques are required to produce an accurate and meaningful fracture surface photograph. This article reviews photographic principles and techniques as applied to failure analysis, both in the field and in the laboratory. The discussion covers the processes involved in field and laboratory photographic documentations, provides a description of professional digital cameras, and gives information on photographic lighting and microscopic photography. Special techniques can be employed to deal with highly reflective conditions and are also described in this article.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
Book Chapter