1-20 of 576 Search Results for

rolling-element bearings failures

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
... Abstract This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
..., failure by corrosion, failure by plastic flow, failure by rolling-contact fatigue, and failure by damage. The article discusses the effects of fabrication practices, heat treatment and hardness of bearing components, and lubrication of rolling-element bearings with a few examples. corrosion damage...
Image
Published: 30 August 2021
Fig. 18 Comparing the actual with the nominal for eliminating potential root causes at an early stage of the rolling-element bearing failure analysis. Source: Ref 30 More
Image
Published: 30 August 2021
Fig. 17 (Part 1) Example of data collection and questions that the rolling-element bearing failure analyst should consider for collecting the data. Source: Ref 24 – 26 More
Image
Published: 30 August 2021
Fig. 17 (Part 2) Example of data collection and questions that the rolling-element bearing failure analyst should consider for collecting the data. Source: Ref 24 – 26 More
Book Chapter

Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006358
EISBN: 978-1-62708-192-4
...) loading effects. A thorough treatment of the failure of rolling-element bearings, including not only RCW but also fracture, may be found in the article “Failures of Rolling-Element Bearings” in Failure Analysis and Prevention , Volume 11 of ASM Handbook , ( Ref 4 ). The mechanisms of surface distress...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
.... A brief discussion on coatings to improve surface-initiated fatigue and wear is included, due to the similarity to RCF and the increasing criticality of this failure mode. The article presents a working knowledge of Hertzian contact theory, describes the life prediction of rolling-element bearings...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006426
EISBN: 978-1-62708-192-4
.... Fatigue failure (contact fatigue) is a key endurance criterion of the surfaces in rolling contact, and rolling-element fatigue has been recognized since the early 1900s by rolling bearing manufacturers because of the concentration of load in a small volume of the material with the geometry of rolling...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006407
EISBN: 978-1-62708-192-4
... Abstract This article discusses the functions of lubricants to prevent premature failure of rolling element bearings and the advantages of fluid lubrication. It describes the composition of refined mineral oil for rolling bearing applications. The article reviews the types and properties...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002401
EISBN: 978-1-62708-193-1
..., this phenomenon is known as rolling contact fatigue. However, frictional forces are always present and thus contact fatigue will be the term used in this article to describe this phenomenon. Contact fatigue is encountered most often in rolling-element bearings and gears, where the surface stresses are high due...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
... bearing) or nonconforming (e.g., contact between the inner race and roller in a rolling-element roller bearing). The alternating stress field responsible for RCF failure can generally be idealized from Hertzian contact conditions in conventional metallic and ceramic materials (e.g., bearing steel and Si 3...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002373
EISBN: 978-1-62708-193-1
..., the bearing becomes noisy and rough running. If allowed to continue, fracture of the rolling element and catastrophic failure occurs. Fractured races can result from fatigue spalling and high hoop stresses. Rolling contact components have a fatigue life (number of cycles to develop a noticeable fatigue...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003564
EISBN: 978-1-62708-180-1
... bearing manufacturing industry. Rolling-contact fatigue (RCF) is the surface damage process due to the repeated application of stresses when the surfaces of two bodies roll on each other. Rolling-contact fatigue is encountered most often in rolling-element bearings and gears. The failure process...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003326
EISBN: 978-1-62708-176-4
... bearings, which include rolling elements (balls, rollers, or needle rollers) between the inner and outer raceways, and sliding, or plain, bearings, which have motion from one surface directly imposed on a stationary support. Rolling bearings include radial, thrust, and angular contact designs. A review...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002376
EISBN: 978-1-62708-193-1
... bearings ROLLING ELEMENT FATIGUE has been recognized since the turn of the century, with fatigue life testing beginning in the early 1900s by rolling bearing manufacturers. Because of the high stresses imposed on bearings, steel with a hard matrix was required. However, the hard matrix, along...
Image
Published: 30 August 2021
Fig. 29 Two failure cases showing the effect of misalignment or tilting moments on rolling-element bearings. (a) Deep-groove ball bearing with rotating outer ring. (b) Tapered roller bearing with rotating outer ring. Source: Ref 24 More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006393
EISBN: 978-1-62708-192-4
... Abstract This article discusses the composition, properties and applications of bearing steels. It focuses on the typical wear modes that rolling-element bearings experience: contact fatigue wear, abrasive wear, adhesive wear, and corrosive wear. The article provides information on reliability...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003136
EISBN: 978-1-62708-199-3
..., and those used in semiconductor packaging operations. Thermal and electrical conductivities and room-temperature mechanical properties are unaffected by small additions of these elements. However, cadmium-copper and zirconium-copper work harden at higher rates than either silver-bearing copper...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006806
EISBN: 978-1-62708-329-4
... Abstract A mechanical part, which supports the moving part, is termed a mechanical bearing and can be classified into rolling (ball or roller) bearings and sliding bearings. This article discusses the failures of sliding bearings. It first describes the geometry of sliding bearings, next...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006403
EISBN: 978-1-62708-192-4
... generated by sliding wear. This condition exists in gear teeth contacts at or near the pitch point and in all contacts between raceway/ball or raceway/roller contacts of rolling-element bearings. Surface or subsurface fatigue is the predominant mode of failure. Surface fatigue life improves greatly...