Skip Nav Destination
Close Modal
By
Pierre Dupont
By
Pierre DuPont, Steven Lampman
Search Results for
rolling-element bearings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 823
Search Results for rolling-element bearings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Failures of Rolling-Element Bearings and Their Prevention
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
... Abstract This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface...
Abstract
This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface engineering. The article presents the nomenclature, numbering systems, and worldwide market of REBs as well as provides description of REBs as high-tech machine components. It discusses heat treatments, performance, and properties of bearing materials. The processes involved in the examination of failed bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations, association websites, and ISO standards.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006407
EISBN: 978-1-62708-192-4
... Abstract This article discusses the functions of lubricants to prevent premature failure of rolling element bearings and the advantages of fluid lubrication. It describes the composition of refined mineral oil for rolling bearing applications. The article reviews the types and properties...
Abstract
This article discusses the functions of lubricants to prevent premature failure of rolling element bearings and the advantages of fluid lubrication. It describes the composition of refined mineral oil for rolling bearing applications. The article reviews the types and properties of nonpetroleum oils, such as polyglycols, phosphate esters, silicone fluids, dibasic acid esters, and fluorinated polyethers. It discusses the properties of greases, including grease speed limits, grease composition, relubrication intervals, corrosion prevention behavior, and grease compatibility. The article concludes with a discussion on polymeric lubricants and solid lubricants.
Book Chapter
Friction and Wear of Rolling-Element Bearings
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006426
EISBN: 978-1-62708-192-4
... Abstract Rolling-element bearings, also called rolling bearings and antifriction bearings, tend to have very low friction characteristics compared to plain bearings or simple sliding bearings. This article discusses the types of rolling-element bearings, namely, ball bearings and roller...
Abstract
Rolling-element bearings, also called rolling bearings and antifriction bearings, tend to have very low friction characteristics compared to plain bearings or simple sliding bearings. This article discusses the types of rolling-element bearings, namely, ball bearings and roller bearings. It provides information on the bearing component materials. The article describes the lubrication requirements and lubrication methods, namely, elastohydrodynamic lubrication and grease lubrication. It reviews the adjustment factors influencing fatigue life of the bearing. The article also provides information on bearing load ratings, standard bearing geometries, rolling bearing friction factors, and wear and its control methods. It concludes with a discussion on damage modes of bearings.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... Abstract Rolling-element bearings use rolling elements interposed between two raceways, and relative motion is permitted by the rotation of these elements. This article presents an overview of bearing materials, bearing-load ratings, and an examination of failed bearings. Rolling-element...
Abstract
Rolling-element bearings use rolling elements interposed between two raceways, and relative motion is permitted by the rotation of these elements. This article presents an overview of bearing materials, bearing-load ratings, and an examination of failed bearings. Rolling-element bearings are designed on the principle of rolling contact rather than sliding contact; frictional effects, although low, are not negligible, and lubrication is essential. The article lists the typical characteristics and causes of several types of failures. It describes failure by wear, failure by fretting, failure by corrosion, failure by plastic flow, failure by rolling-contact fatigue, and failure by damage. The article discusses the effects of fabrication practices, heat treatment and hardness of bearing components, and lubrication of rolling-element bearings with a few examples.
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Image
Typical morphology of fatigue spall in rolling-element bearings. (a) Fatigu...
Available to PurchasePublished: 01 January 2002
Fig. 1 Typical morphology of fatigue spall in rolling-element bearings. (a) Fatigue spall centered on a ball bearing raceway. (b) Fatigue spall on 12.7 mm (0.5 in.) diameter steel ball obtained using rolling four-ball machine
More
Image
Typical morphology of fatigue spall in rolling-element bearings. (a) Fatigu...
Available to PurchasePublished: 15 January 2021
Fig. 51 Typical morphology of fatigue spall in rolling-element bearings. (a) Fatigue spall centered on a ball bearing raceway. (b) Fatigue spall on 12.7 mm (0.5 in.) diameter steel ball obtained using rolling four-ball machine
More
Image
Radial rolling-element bearings. (a) Cutaway view of radial ball bearing sh...
Available to PurchasePublished: 31 December 2017
Fig. 1 Radial rolling-element bearings. (a) Cutaway view of radial ball bearing showing inner ring, outer ring, balls, and cage assembly. (b) Tapered roller bearing showing cup and cone components
More
Image
Principal components of rolling-element bearings. Note that the tapered rol...
Available to PurchasePublished: 31 December 2017
Fig. 2 Principal components of rolling-element bearings. Note that the tapered roller bearing is only one example of roller geometry. Other geometries include radial roller, needle, and spherical.
More
Image
Summary of basic load rating equations for rolling-element bearings used wi...
Available to PurchasePublished: 31 December 2017
Fig. 18 Summary of basic load rating equations for rolling-element bearings used with Tables 5 through 9
More
Image
(a) Main structure of sealing lips used in rolling-element bearings. (b) Ex...
Available to Purchase
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 9 (a) Main structure of sealing lips used in rolling-element bearings. (b) Examples of different sealing lip geometries. Left to right: open version (no suffix), noncontacting steel sheet deflector (suffix “Z”), noncontacting rubber lip seal (suffix “RZ”), noncontacting labyrinth rubber
More
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Image
Different wearing patterns observed in rolling-element bearings. (a) Smeari...
Available to Purchase
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 35 Different wearing patterns observed in rolling-element bearings. (a) Smearing of the axial side of rollers and taper-shaped wear. (b) Adhesive wear of rollers under heavy sliding (unloaded roller). (c) Abrasive wear due to sliding in the entry and exit of the loaded zone. (d) Geometric
More
Image
Estimating the reference viscosity (ν 1 ) from the rolling-element bearing ...
Available to PurchasePublished: 31 December 2017
Fig. 9 Estimating the reference viscosity (ν 1 ) from the rolling-element bearing mean diameter ( d M ), the operating (film) temperature (ϑ), the rolling-element bearing operating speed ( n ), and the International Organization for Standardization viscosity-grade (ISO-VG) classes. (Only
More
Image
The different oil lubricant feeding systems in rolling-element bearing indu...
Available to PurchasePublished: 31 December 2017
Fig. 12 The different oil lubricant feeding systems in rolling-element bearing industrial applications. (a) Drip lubrication. (b) Oil bath. (c) Oil recirculation with a filtering and cooling system. Source: Ref 13 , 14 , 15 , 21
More
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Image
Main loading directions of rolling-element bearing structures. Adapted from...
Available to Purchase
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Image
Examples of different rolling-element bearing structures. (a) Point contact...
Available to Purchase
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 3 Examples of different rolling-element bearing structures. (a) Point contact solutions for combined loading direction. Left two images: angular contact solutions; right two images: axial loading solutions. (b) Line contact solutions for combined loading direction. Left two images: radial
More
Image
Impact of indentation size on relative life of rolling-element bearing. Cur...
Available to Purchase
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 12 Impact of indentation size on relative life of rolling-element bearing. Curve 1: 0.3 mm (0.01 in.); curve 2: 0.1 mm (0.004 in.); and curve 3: no indentation. Source: Ref 19
More
1