Skip Nav Destination
Close Modal
Search Results for
robust design
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 355
Search Results for robust design
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002435
EISBN: 978-1-62708-194-8
... Abstract This article addresses problems, such as “in spec” dilemma and on-target key, associated with traditional approaches to quality. It discusses major robust design techniques, tools, and concepts, such as quality loss function, parameter design, tolerance design, signal-to-noise ratio...
Abstract
This article addresses problems, such as “in spec” dilemma and on-target key, associated with traditional approaches to quality. It discusses major robust design techniques, tools, and concepts, such as quality loss function, parameter design, tolerance design, signal-to-noise ratio, technology development, and orthogonal arrays.
Image
Published: 01 January 1997
Fig. 10 Timing of Taguchi robust design steps. PD, parameter design (new product and process technologies); SPD, system (product) parameter design; TD, tolerance design; SVT, system verification test; PPD, process parameter design; QC, on line quality control (factory floor)
More
Image
in Simulation-Driven Design and the Role of Optimization in Design for Additive Manufacturing
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 17 Example of robust topology optimization carrier plate. (a) Design domain and initial topology. (b) Deterministic solution. (c) Robust solution. Source: Ref 101
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002429
EISBN: 978-1-62708-194-8
... illustrates the integration of product requirements and concept development. The article concludes with a discussion on the improvement of concepts in terms of robust design and mistake minimization. concurrent engineering decision making field-support capability mistake minimization multifunctional...
Abstract
Concurrent engineering is product development that is done by concurrently utilizing all of the relevant information in making each decision. This article discusses the three aspects that must be taken into account for all product development decisions. The aspects include product functionality, production capability, and field-support capability. The concurrent process is carried out by a multifunctional team that integrates the specialties. The article schematically illustrates product design team configurations with subsystem teams and team of subsystem leaders. It discusses the three-step decision-making process, such as requirements, concepts, and improvement, followed by multifunctional product development teams. The article describes the two types of requirements development by multifunctional teams, namely, quality function deployment and functional analysis. It schematically illustrates the integration of product requirements and concept development. The article concludes with a discussion on the improvement of concepts in terms of robust design and mistake minimization.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005534
EISBN: 978-1-62708-197-9
... on uncertainty mitigation is followed by a discussion of uncertainty management, starting with an understanding of uncertainty propagation and multiscale robust design. Input Data for Surrogate Modeling Managing uncertainty starts with determining the context of the design problem and identifying options...
Abstract
This article presents an approach to manage the uncertainty present in materials design. It describes inductive and deductive approaches to deal with uncertainty. The article focuses on providing an understanding of the opportunities for managing uncertainty and the decisions that influence the accuracy of the results. A design of experiments (DOE) represents a sequence of experiments to be performed, expressed in terms of factors set at specified levels. The article discusses the two types of DOEs: the full factorial design and the fractional factorial design. It explains the factors to be considered when selecting a procedure for propagating uncertainty. The article lists the categories of the popular types of uncertainty propagation methods, including simulation-based methods, local expansion methods, and numerical integration-based methods.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002424
EISBN: 978-1-62708-194-8
... are made, and the conditions under which they are used, are variable. Designing so that products are robust under these variabilities is another design requirement. Designing a complex product or even a relatively simple one with all these requirements and considerations in mind is a tough and complex...
Abstract
This article presents an overview of an engineering design process. Though the process is extremely complex, distinct stages of design activities are identified and described. The article illustrates guided iteration methodology that helps in problem solving in design. It describes the engineering conceptual design and configuration design of special-purpose parts. It discusses the parametric design methods of the parts and best practices that are used by successful firms to achieve the goals of quality, cost, time-to-market, and marketing flexibility.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002447
EISBN: 978-1-62708-194-8
...-simulation tools used to improve quality and reduce cost through controlled variation and robust design. The objective of dimensional management is to create a design and process that “absorbs” as much variation as possible without affecting the function of the product. Dimensional management accomplishes...
Abstract
The objective of dimensional management is to create a design and process that absorbs as much variation as possible without affecting the function of the product. This article describes the steps followed by the dimensional management process. These include defining product dimensional requirements, determining process and product requirements, ensuring accurate documentation, developing a measurement plan that validates product requirements, establishing manufacturing capabilities versus design intent, and establishing production-to-design feedback loop. The article discusses the simulation model in terms of a functional feature product model, component part variation, assembly method variation, measurement schemes, and assembly sequences.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002434
EISBN: 978-1-62708-194-8
... Baldrige award are less meaningful, in the author's opinion, than the customer's evaluation. Customer satisfaction is the prime measure of product quality. Quality and Robust Design Taguchi's approach to quality evaluation (see the article “Robust Design” in this Volume) is more quantitative than...
Abstract
This article describes how design can unfavorably affect product quality. It provides information on the total quality management philosophy, emphasizing the principles of quality management. The article discusses various methods for evaluating a product design for quality. It presents design guidelines that are intended to provide products with a potential for higher levels of quality.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005505
EISBN: 978-1-62708-197-9
... design quality (reliability and robustness). Many methods have been developed for stochastic sampling, including Monte Carlo methods ( Ref 31 , 32 ), structural reliability analysis methods ( Ref 33 , Ref 34 , Ref 35 ), sensitivity-based methods, based on Taylor's expansion ( Ref 36 , 37...
Abstract
The process of optimization involves choosing the best solution from a pool of potential candidate solutions. This article provides a description of some classes of problems and the optimization methods that solve them. These problems include the deterministic single-objective problem, the deterministic multiobjective problem, and the nondeterministic, stochastic optimization problem. The article presents several complementary approaches to solve a wide variety of single-objective and multiobjective mechanical engineering applications. Multiobjective optimization study and stochastic optimization studies are also discussed.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005153
EISBN: 978-1-62708-186-3
... design and its application to various manufacturing processes. It presents various examples of control system applications to show that appropriate control strategies increase the robustness of the processes by eliminating process sensitivity to system variations and external disturbances. feedback...
Abstract
The use of an effective control design, along with high-performance hardware and software for controller implementation, allows the use of feedback process control for manufacturing processes to improve part quality and consistency. This article provides an overview of control system design and its application to various manufacturing processes. It presents various examples of control system applications to show that appropriate control strategies increase the robustness of the processes by eliminating process sensitivity to system variations and external disturbances.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005576
EISBN: 978-1-62708-174-0
.... The critical features of FSW tool design, initial process parameters, systematic welding trials, and robustness testing are reviewed. The article provides information on the common features of welding procedure qualification. It also includes a table that lists the procedures used in the production of sound...
Abstract
This article discusses the development of a welding procedure for friction stir welding (FSW), including the process of defining a preliminary procedure, the optimization of parameters, the development of supporting data, and other key features to ensure a successful procedure. The critical features of FSW tool design, initial process parameters, systematic welding trials, and robustness testing are reviewed. The article provides information on the common features of welding procedure qualification. It also includes a table that lists the procedures used in the production of sound friction stir welds in various aluminum alloys.
Book Chapter
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0005751
EISBN: 978-1-62708-194-8
... Abstract This article is a compilation of definition of terms related to materials selection and its integration with engineering design processes. materials selection engineering design process DOI: 10.31399/asm.hb.v20.a0005751 Glossary of Terms A accuracy. In measurement, the lack...
Abstract
This article is a compilation of definition of terms related to materials selection and its integration with engineering design processes.
Image
in Simulation-Driven Design and the Role of Optimization in Design for Additive Manufacturing
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 18 Multimaterial topology optimization design on a cantilever beam case. (a) Design problem. (b) Deterministic solution. (c) Robust solution. Adapted from Ref 107
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.9781627081948
EISBN: 978-1-62708-194-8
Image
Published: 01 January 2006
Fig. 1 The stress-strain curves for consecutive coils of steel for a single grade of steel, illustrating that no two are alike. The parts and the dies must be designed to be sufficiently robust to handle such normal and reasonable variation.
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003401
EISBN: 978-1-62708-195-5
... Abstract This article explains the key features of the manufacturing techniques for polymer composites. It describes the selection of a technically and economically feasible manufacturing technique for a composite design. The article discusses widely accepted and emerging techniques...
Abstract
This article explains the key features of the manufacturing techniques for polymer composites. It describes the selection of a technically and economically feasible manufacturing technique for a composite design. The article discusses widely accepted and emerging techniques to manufacture polymer composites such as open-mold techniques.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003087
EISBN: 978-1-62708-199-3
... of mathematical optimization routines and shifts the emphasis to experience. Experience is essential in dealing with these “soft issues” related to qualitative non-property considerations. The design must be producible. This means robust processes must be selected that have known statistical variation...
Abstract
Engineering design should result in a product that performs its function efficiently and economically within the prevailing legal, social, safety, and reliability requirements. This introductory article discusses some key considerations in design, material selection, and manufacturing that a materials engineer should take into account to satisfy such requirements. It includes a brief section on concurrent engineering, which companies use to ensure that all needed input is obtained and addressed concurrently throughout the product lifecycle, including material selection and processing, product design, cost analysis, manufacturing, recyclability, and performance.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002423
EISBN: 978-1-62708-194-8
.... This means robust processes must be selected that have known statistical variation and will yield features or complete parts that lie well within the specification limits. This design for manufacturability approach is becoming popular, is an integral part of an IPD team's tool box, and has been demonstrated...
Abstract
This article discusses the various roles and responsibilities of materials engineers in a product realization organization and suggests different ways in which materials engineers may benefit their organization. It also provides a summary of the concepts discussed in the articles under the Section “The Role of the Materials Engineer in Design” in ASM Handbook, Volume 20: Materials Selection and Design.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005150
EISBN: 978-1-62708-186-3
... is achieved. It is common for dies to not work well with material from any other mill. To make the dies robust to the normal and reasonable variation of the material is to design the dies to be robust to that variation rather than to “just get them to work.” Such designs were impossible in the past...
Abstract
This article describes grade designations of the various sheet steels used for draw forming. It discusses the specifications associated with most sheet draw forming materials. The article examines the behavior of stress- and strain-based forming limit curve (FLC). It provides a discussion on three separate frictional conditions acting in a draw die. The frictional conditions include the metal passing through a draw bead, the metal clamped in the binder, and the metal sliding across a die radius. The article also explains the basic steps in the vehicle development process. The steps involved in the thought process of direct engineering for formability are also explained. The article places considerable emphasis on the need for the designer to clearly define the die/tooling faces in the computer-aided design (CAD)/computer-aided manufacturing (CAM) system before the data are passed on to the construction functions.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003088
EISBN: 978-1-62708-199-3
... for manufacture and assembly (DFMA) Design for quality Robust design (Taguchi method) Statistical process control (SPC) Total quality management (TQM) Reliability in design Quantitative determination Reliability testing Redesign Design review Simplification and standardization...
Abstract
This article describes design factors for products used in engineering applications. The article groups these factors into three categories: functional requirements, analysis of total life cycle, and other major factors. These categories intersect and overlap, constituting a major challenge in engineering design. Performance specifications, risk and hazard analysis, design process, design for manufacture and assembly, design for quality, reliability in design, and redesign are considered for functional requirements. Life-cycle analysis considers raw-material extraction from the earth and product manufacture, use, recycling (including design for recycling), and disposal. The other major factors considered include evaluation of the current state of the art for a given design, designing to codes and standards, and human factors/ergonomics.
1