Skip Nav Destination
Close Modal
Search Results for
risk analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 655 Search Results for
risk analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1997
Fig. 8 Typical risk analysis graph. If target ELI is 100, ELI in region C are unacceptable, ELI in regions A and B are acceptable. Source: Ref 7
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002436
EISBN: 978-1-62708-194-8
... Abstract Risk and hazard analysis can be effectively used during design reviews to provide valuable feedback to the design to avoid failures. This article discusses the types of risks, namely, real risk, statistical risk, predicted risk, and perceived risk. It describes the principle...
Abstract
Risk and hazard analysis can be effectively used during design reviews to provide valuable feedback to the design to avoid failures. This article discusses the types of risks, namely, real risk, statistical risk, predicted risk, and perceived risk. It describes the principle and technical methods of risk/hazard analysis practiced in the industry to identify possible hazards and the resources necessary to avoid or reduce risks. These methods include the failure mode and effect analysis, fault tree analysis, event tree analysis, risk/benefit analysis, safety analysis, and probabilistic estimates.
Image
Published: 01 January 2002
Fig. 4 Flow chart showing the integration of risk and hazard analysis into the design process. Source: Ref 7
More
Image
Published: 01 December 1998
Fig. 1 Flow chart showing the integration of risk and hazard analysis into the design process. Source: adapted from Ref 1
More
Image
in Materials Selection for Failure Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 4 Flow chart showing the integration of risk and hazard analysis into the design process. Source: Ref 7
More
Image
Published: 15 June 2020
Image
Published: 01 January 1997
Fig. 1 Flow chart showing the integration of risk and hazard analysis into the design process. Source: adapted from Ref 1
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003514
EISBN: 978-1-62708-180-1
..., the response surface method, and Monte Carlo sampling. A brief introduction to importance sampling, time-variant reliability, system reliability, and risk analysis and target reliabilities is also provided. The article examines the various application problems for which probabilistic analysis is an essential...
Abstract
This article describes the historical background, uncertainties in structural parameters, classifications, and application areas of probabilistic analysis. It provides a discussion on the basic definition of random variables, some common distribution functions used in engineering, selection of a probability distribution, the failure model definition, and a definition of the probability of failure. The article also explains the solution techniques for special cases and general solution techniques, such as first-second-order reliability methods, the advanced mean value method, the response surface method, and Monte Carlo sampling. A brief introduction to importance sampling, time-variant reliability, system reliability, and risk analysis and target reliabilities is also provided. The article examines the various application problems for which probabilistic analysis is an essential element. Examples of the use of probabilistic analysis are presented. The article concludes with an overview of some of the commercially available software programs for performing probabilistic analysis.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005686
EISBN: 978-1-62708-198-6
... infrared analysis medical devices polymeric biomaterials qualitative tests quantitative tests risk assessment thermal analysis CURRENTLY, there is a great deal of discussion about the merits of chemical and material characterization with regard to medical device biocompatibility. While it may...
Abstract
This article provides a background to the biological evaluation of medical devices. It discusses what the ISO 10993 standards require for polymeric biomaterials and presents examples of qualitative and quantitative tests that can be used to satisfy these requirements. The article describes infrared (IR) and thermal analyses that are used extensively to fingerprint polymeric materials. It also presents a discussion on the chemical characterization and risk assessment of extracts. Background information on risk assessments of extracts is also included. The four basic steps that are commonly used in the risk assessment process are discussed. These include hazard identification, dose-response assessment, and exposure assessment, and risk characterization.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003396
EISBN: 978-1-62708-195-5
... inputs for braiding are displayed. Fig. 6 Braiding parameter input window in SEER-DFM software Note that various inputs can be “bounded” by a range of values. This allows a user to perform a risk analysis on one or more variables, in the event that exact inputs are not known or defined...
Abstract
Affordability is the key issue facing design engineers and manufacturers of composite components for current and next-generation aircraft, spacecraft, propulsion systems, and other advanced applications. This article describes the software tools available for modeling and analyzing costs associated with design and manufacturing options for advanced composites programs. It presents an example of a composite exhaust nozzle shroud where the design and manufacture options were analyzed and adjusted, based on the use of cost analysis tools. The article also lists some of the attributes found in various cost modeling software and the potential cost benefits.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003088
EISBN: 978-1-62708-199-3
... challenge in engineering design. Performance specifications, risk and hazard analysis, design process, design for manufacture and assembly, design for quality, reliability in design, and redesign are considered for functional requirements. Life-cycle analysis considers raw-material extraction from the earth...
Abstract
This article describes design factors for products used in engineering applications. The article groups these factors into three categories: functional requirements, analysis of total life cycle, and other major factors. These categories intersect and overlap, constituting a major challenge in engineering design. Performance specifications, risk and hazard analysis, design process, design for manufacture and assembly, design for quality, reliability in design, and redesign are considered for functional requirements. Life-cycle analysis considers raw-material extraction from the earth and product manufacture, use, recycling (including design for recycling), and disposal. The other major factors considered include evaluation of the current state of the art for a given design, designing to codes and standards, and human factors/ergonomics.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006430
EISBN: 978-1-62708-192-4
... Abstract Through detection of the wear, risk assessment can be performed, along with a related time to failure estimation through technologies such as electrical signature analysis (ESA) and motor current signature analysis. This article discusses the principle of operation of data collectors...
Abstract
Through detection of the wear, risk assessment can be performed, along with a related time to failure estimation through technologies such as electrical signature analysis (ESA) and motor current signature analysis. This article discusses the principle of operation of data collectors for ESA measurements and illustrates the evaluation of broken rotor bars and a broken shaft. It describes the detection of faults in bearings using ESA and provides information on the investigation of gearboxes and related components in a wind generator.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003391
EISBN: 978-1-62708-195-5
... a wide variety of test-analysis correlation objectives. At these levels, enhanced analysis capability can be used most effectively in minimizing test complexity and cost while also reducing design weight and risk. The article discusses the examples of tests for which good correlative capability has shown...
Abstract
Detailed analyses and test correlations are typically required to support design development, structural sizing, and certification. This article addresses issues concerning building block levels ranging from design-allowables coupons up through subcomponents, as these levels exhibit a wide variety of test-analysis correlation objectives. At these levels, enhanced analysis capability can be used most effectively in minimizing test complexity and cost while also reducing design weight and risk. The article discusses the examples of tests for which good correlative capability has shown significant benefit. These include notched (open and/or filled hole) tension and compression, inter/intralaminar shear and tension, and pin bearing.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006938
EISBN: 978-1-62708-395-9
... Abstract A design may be improvable without presenting an unacceptable risk related to safety or performance. However, design-related failures can result from an oversight in performing one of the major design activities or from a failure to balance the competing demands inherent to part design...
Abstract
A design may be improvable without presenting an unacceptable risk related to safety or performance. However, design-related failures can result from an oversight in performing one of the major design activities or from a failure to balance the competing demands inherent to part design. This article focuses on design-related failures in products utilizing polymeric materials, and reviews important considerations of the design envelope of plastic parts. The article provides a non-exhaustive list and descriptions of design tools that can support the design process and the prevention of design-related failures. It also discusses the most common causes of design-related failures of plastic parts. The article can assist in both failure analysis and in the prevention of failures in which design may be a contributing factor or a root cause.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006803
EISBN: 978-1-62708-329-4
... is negligible to safety, the risk of a rupture in a main coolant line in a nuclear reactor can be catastrophic. If conservatism in design was sometimes appropriate when some structures were built, a more risk-informed realistic analysis can now be used to extend their life while maintaining the safety...
Abstract
This article provides an outline of the issues to consider in performing a probabilistic life assessment. It begins with an historical background and introduces the most common methods. The article then describes those methods covering subjects such as the required random variable definitions, how uncertainty is quantified, and input for the associated random variables, as well as the characterization of the response uncertainty. Next, it focuses on specific and generic uncertainty propagation techniques: first- and second-order reliability methods, the response surface method, and the most frequently used simulation methods, standard Monte Carlo sampling, Latin hypercube sampling, and discrete probability distribution sampling. Further, the article discusses methods developed to analyze the results of probabilistic methods and covers the use of epistemic and aleatory sampling as well as several statistical techniques. Finally, it illustrates some of the techniques with application problems for which probabilistic analysis is an essential element.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006960
EISBN: 978-1-62708-439-0
... are followed all the time by using job safety analysis or job risk analysis, if needed. Maintain required personal protective equipment (PPE). Typical PPE used in a metal AM facility is shown in Fig. 3 . Create and document an emergency response plan. Fig. 3 Typical personal protective...
Abstract
This article provides an overview of the concepts of environmental, health, and safety (EH&S) risk incidents, then discusses these concepts relative to additive manufacturing (AM): the multiple intrants, process parameters, and equipment, as well as the resulting products and wastes. The article discusses additive manufacturing hazards, which are broken down into material hazards, equipment/process hazards, and facility hazards. The environmental impact of AM and the development of EH&S standards for AM also are covered in the article.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003642
EISBN: 978-1-62708-182-5
... of variables to produce a quick screening of high-risk system components. Others consider the impact of a multitude of variables in their overall assessment. The danger in using too few variables is that the analysis becomes more qualitative than quantitative, approaching more of the fundamental indexing...
Abstract
Corrosion modeling is an essential benchmarking element for the selection and life prediction associated with the introduction of new materials or processes. These models are most naturally expressed in terms of differential equations or in other nonexplicit forms of mathematics. This article discusses the principles and applications of various models developed for understanding the corrosion mechanism. These models include mechanistic models, including Pourbaix model, thermophysical module, electrochemical module, and ion association model; risk-based models; and knowledge models. The risk-based model and knowledge models are illustrated with examples for better understanding. The article also describes boundary-element modeling and pitting corrosion fatigue models.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004110
EISBN: 978-1-62708-184-9
..., analyses, and review of pipeline data to determine if the ECDA process can be applied over the pipeline or a segment of the pipeline. ECDA specific data analysis includes many of the same data elements that are typically considered in the overall pipeline risk (threat) assessment. Depending...
Abstract
External corrosion direct assessment (ECDA) is a structured process intended for use by pipeline operators to assess and manage the impact of external corrosion on the integrity of underground pipelines. This article focuses on four steps of ECDA, namely, preassessment, indirect examinations, direct examination, and post assessment. The ECDA tool selection matrix used to determine the tool choices is also presented.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004131
EISBN: 978-1-62708-184-9
... to the reduction in airworthiness and results in an evaluation based on the acceptable risk. The analysis is founded on a previous knowledge of the degradation mechanisms involved in the aging process. With respect to this point, corrosion data collection has already proved to be an effective tool in risk...
Abstract
Aging is a process where the structural and/or functional integrity of components will be continuously degraded by exposure to the environmental conditions under which they are operated. This article discusses aging mechanisms in various components of military systems such as structural parts, engines, and subsystems. It describes the aging management processes such as full-scale structural testing and practical life-enhancement methods. The article reviews control and prevention systems such as usage and health monitoring systems necessary to provide effective corrosion maintenance on military systems. Failure prediction techniques, namely, the equivalent pre-crack size approach, life-cycle cost modeling and simulation, and holistic life-prediction methodology are also discussed.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002439
EISBN: 978-1-62708-194-8
... in the article “Risk and Hazard Analysis in Design” in this Volume. Failure Modes and Criticality Analysis Some components or assemblies in product are especially critical to the product's function and the safety of operators. These should be given special attention with more detailed analysis than...
Abstract
Any threat to personal safety should be regarded as a hazard and treated as such. This article discusses threats from several sources, such as kinematic/mechanical hazards, electrical hazards, energy hazards, human factors/ergonomic hazards, and environmental hazards. It describes hazard analysis in terms of failure modes and effects analysis, failure modes and criticality analysis, fault tree analysis, fault hazard analysis, and operating hazards analysis. The article examines fail-safe designs, such as fail-passive designs, fail-active designs, and fail-operational designs. It also provides information on various types of warnings, such as visual warning, auditory warnings, olfactory warnings, tactile warnings, and tastable warnings.
1