Skip Nav Destination
Close Modal
By
Pierre Dupont
Search Results for
ring-rolling machines
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 648
Search Results for ring-rolling machines
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2005
Image
Sketch of a three-mandrel mechanical ring rolling machine. (a) Side view. (...
Available to PurchasePublished: 01 January 2005
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
... Abstract Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling...
Abstract
Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling and surface-rolling machines. The article outlines the significant characteristics of pressing-type machines: load and energy characteristics, time-related characteristics, and accuracy characteristics. It summarizes different specialized processes such as advanced roll-forming methods, equal-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003982
EISBN: 978-1-62708-185-6
... Abstract Ring rolling is a process for creating seamless ring shaped components using specialized equipment and forming processes. This article provides information on the applications of ring rolling. It discusses the types of machines used for ring rolling, namely, vertical rolling machines...
Abstract
Ring rolling is a process for creating seamless ring shaped components using specialized equipment and forming processes. This article provides information on the applications of ring rolling. It discusses the types of machines used for ring rolling, namely, vertical rolling machines, radial-axial horizontal rolling machines, four-mandrel mechanical table mills, three-mandrel table mills, and automatic radial-axial multiple-mandrel ring mills. The article provides a discussion on the process control technology and ancillary operations of ring rolling. It describes the methods of producing ring blanks and the various types of blanking and rolling tools used in ring rolling process. The article concludes with a discussion on rolled ring tolerances and machining allowances.
Image
Conventional aluminum alloy forgings for gimbal ring: ring-rolled (a) and f...
Available to PurchasePublished: 01 January 2005
imperfections Match 1.0 mm (0.04 in.) Straightness (TIR) 1.0 mm (0.04 in.) Flash extension 1.5 mm (0.06 in.) max (a) Also applicable to ring-rolled forging of original design, or part machined therefrom. (b) Sequence in ring rolling was: upset, pierce, and roll. (c) In accordance
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003564
EISBN: 978-1-62708-180-1
... was tested in contact with an En31 steel lower ball, and this increased the time of failure to 70 s. Wear properties of silicon nitride in dry rolling-sliding contact were studied using a ring-on-roller test machine ( Ref 52 ). Under no lubrication and a maximum Hertzian pressure of 1.1 GPa (0.16 × 10 6...
Abstract
Rolling-contact fatigue (RCF) is a surface damage process due to the repeated application of stresses when the surfaces of two bodies roll on each other. This article briefly describes the various surface cracks caused by manufacturing processing faults or blunt impact loads on ceramic balls surfaces. It discusses the propagation of fatigue cracks involved in rolling contacts. The characteristics of various types of RCF test machines are summarized. The article concludes with a discussion on the various failure modes of silicon nitride in rolling contact. These include the spalling fatigue failure, the delamination failure, and the rolling-contact wear.
Image
Conventional ring-rolled forgings of original design (a) and revised design...
Available to PurchasePublished: 01 January 2005
Fig. 9 Conventional ring-rolled forgings of original design (a) and revised design (b), containing variations in depth of cavity and machining allowance. See Example 3 . Dimensions in figure given in inches Item Conventional ring-rolled forging (revised) Material AMS 4966 (Ti
More
Book Chapter
Forging Design Involving Cavities and Holes
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004040
EISBN: 978-1-62708-185-6
... and Depth of Cavity That Aided Producibility and Reduced Cost of a Ring-Rolled Forging A relatively small reduction in the depth of an external cavity, together with a reduction in machining allowance, enhanced the producibility of a ring-rolled forging, while also providing a reduction in overall cost...
Abstract
Machining serves as a more specialized supplement to the forging process, particularly in the formation of cavities and holes. This article provides information on the enclosures, cavities, and holes in hammer and press forgings. It provides a checklist that serves as a guide to the procedure for reviewing the design of cavities and holes to be incorporated in forgings. The article also describes forging designs in which cavities and holes are related to rib and web designs, punchout, piercing, extruding, and combinations of these processes.
Image
Processing sequences for (a) ring rolling and (b) power spinning rocket eng...
Available to PurchasePublished: 01 January 2005
(a) (b) Forging equipment 22 MN (25,000 tonf) press; 1830 mm (72 in.) ring roll (b) Supplemental equipment Horizontal spinning Forging operations Prepare; extrude and punch; ring roll (b) Supplemental operations Machine; three-pass spinning Heat treatment (b) (c) Mechanical
More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002154
EISBN: 978-1-62708-188-7
... cylindrical surfaces, namely, ring lapping, machine lapping between plates, centerless roll lapping with loose abrasives, and centerless lapping with bonded abrasives. In addition, the article discusses the methods employed for lapping of outer surfaces of piston rings, crankshafts, inner cylindrical surfaces...
Abstract
Lapping is the lower-pressure, lower-speed, and lower-power application of the use of fixed abrasives. This article begins with a discussion on the process capabilities of lapping and reviews the selection of abrasive and vehicle for lapping. It describes the methods of lapping outer cylindrical surfaces, namely, ring lapping, machine lapping between plates, centerless roll lapping with loose abrasives, and centerless lapping with bonded abrasives. In addition, the article discusses the methods employed for lapping of outer surfaces of piston rings, crankshafts, inner cylindrical surfaces, flat surfaces, end surfaces, spherical surfaces, balls, spring like parts, and gears. It also reviews the problems in flat and end lapping. The article concludes information on the use of lapping in accelerated wearing-in process for matching and aligning components of bearing assemblies.
Image
Cap-to-pipe weldment. Low-carbon steel welded to medium-carbon steel; low-c...
Available to PurchasePublished: 01 January 1997
, with integral backing Joint preparation: Original design Backing ring machined Improved design Cap end machined, pipe end reduced Electrode wire 3.2 mm ( 1 8 in.) diam EL12 Flux F62 Welding position Flat (horizontal-rolled pipe) Welding voltage 25 to 26 V Welding
More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003326
EISBN: 978-1-62708-176-4
.... Testing of Rolling Bearings From the 1910s to about 1945, bearing testing was primarily based on the use of test machines designed and built by the bearing manufacturer and in some universities. Enough information developed in this time period for a symposium on the testing of bearings ( Ref 19...
Abstract
This article provides an overview of two major classes of bearings: rolling bearings and sliding, or plain, bearings. It reviews the experimental data resulted from testing of rolling and sliding bearing materials with illustration. The article presents a table that summarizes rolling contact fatigue test methods that ASTM published in STP 771. It also describes the role of lubrication in the bearings.
Book Chapter
Bending of Bars and Bar Sections
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005134
EISBN: 978-1-62708-186-3
... Abstract This article describes various bending methods: draw bending, compression bending, roll bending, stretch bending, and ram-and-press bending. It discusses the machines used for the bending of bars. These machines include devices and fixtures for manual bending, press brakes...
Abstract
This article describes various bending methods: draw bending, compression bending, roll bending, stretch bending, and ram-and-press bending. It discusses the machines used for the bending of bars. These machines include devices and fixtures for manual bending, press brakes, conventional mechanical and hydraulic presses, horizontal bending machines, rotary benders, and bending presses. The article illustrates the tools used in bending and other bending process. It also tabulates the lubricants required for bending specific metals.
Book Chapter
Failures of Rolling-Element Bearings and Their Prevention
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
... Abstract This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface...
Abstract
This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface engineering. The article presents the nomenclature, numbering systems, and worldwide market of REBs as well as provides description of REBs as high-tech machine components. It discusses heat treatments, performance, and properties of bearing materials. The processes involved in the examination of failed bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations, association websites, and ISO standards.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... of ball cage Inner or outer rings out of square; abrasive matter in bearing Internal looseness from wear of raceway surfaces and rolling elements Abrasive matter in bearing because of insufficient or inefficient lubrication or ineffective filtration of lubricant Uneven wear in ball path Vibration...
Abstract
Rolling-element bearings use rolling elements interposed between two raceways, and relative motion is permitted by the rotation of these elements. This article presents an overview of bearing materials, bearing-load ratings, and an examination of failed bearings. Rolling-element bearings are designed on the principle of rolling contact rather than sliding contact; frictional effects, although low, are not negligible, and lubrication is essential. The article lists the typical characteristics and causes of several types of failures. It describes failure by wear, failure by fretting, failure by corrosion, failure by plastic flow, failure by rolling-contact fatigue, and failure by damage. The article discusses the effects of fabrication practices, heat treatment and hardness of bearing components, and lubrication of rolling-element bearings with a few examples.
Image
Schematic of a three-section ring rolling program on a computer numerical c...
Available to PurchasePublished: 01 January 2005
Fig. 21 Schematic of a three-section ring rolling program on a computer numerical controlled ring mill. In section 1, diameter growth rate increases linearly. In section 2, diameter growth rate is constant, compatible with ring stability and machine characteristics. In section 3, diameter
More
Image
Helicopter ring gear, shown as (a) a conventional forging, and (b) a ring-r...
Available to PurchasePublished: 01 January 2005
Fig. 22 Helicopter ring gear, shown as (a) a conventional forging, and (b) a ring-rolled forging. Machined contours of the gear are shown in phantom on the sectional views. Dimensions given in inches
More
Book Chapter
Straightening of Tubing
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005137
EISBN: 978-1-62708-186-3
... be maximum, and care should be exercised in the adjustment of opposed rolls to avoid excessive ovalizing and pressure on a short section of tubing. In a two-roll machine, the length of curve is limited to the length of the roll, and tubing with very thin walls may be subject to ringing at the roll shoulders...
Abstract
Tubing of any cross-sectional shape can be straightened by using various equipment and techniques. This article provides a discussion on principal factors that influence the procedures and tooling of tube straightening. It describes the tooling and application of different types of tube straightening techniques, namely, press straightening, parallel-roll straightening, two-roll rotary straightening, multiple-roll rotary straightening, and ovalizing in rotary straighteners.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003242
EISBN: 978-1-62708-199-3
... Method for Wear Rate of Materials in Self-Lubricated Rubbing Contact Using a Thrust Washer Testing Machine Thickness change D 3704 Test Method for Wear Preventative Properties of Lubricating Greases Using the (Falex) Block on Ring Test Machine in Oscillating Motion Wear scar width D 4172 Test...
Abstract
Wear is mechanically-induced surface damage that results in the progressive removal of material. Because different types of wear occur in machinery, many different types of wear tests have been developed to evaluate its effects on materials and surface treatments. This article provides an explanation on mechanisms, forms (sliding, impact, and rolling) and the causes of wear. It describes the wear measuring methods, including the mass loss method, wear width method, and scar depth method. The units used to report wear vary with type of wear and with the purpose for which the data are to be used. Listing the considerations of tribosystem analysis, the article provides information on selection of ASTM wear test methods grouped by wear type. The article concludes by tabulating the testing geometries and parameters that are commonly controlled and reported when conducting wear tests.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001021
EISBN: 978-1-62708-161-0
... Abstract Forgings are classified in various ways, beginning with the general classifications open die and closed die. They are also classified according to how they are made; such as hammer upset forgings, ring-rolled forgings, and multiple-ram press forgings; and in terms of the close...
Abstract
Forgings are classified in various ways, beginning with the general classifications open die and closed die. They are also classified according to how they are made; such as hammer upset forgings, ring-rolled forgings, and multiple-ram press forgings; and in terms of the close-to-finish factor or amount of stock that must be removed to satisfy the dimensional and detail requirements of the finished part. In addition to types and classifications, the article discusses critical design factors and ways to ensure that the resulting forgings measure up to metallurgical, mechanical property, and dimensional accuracy requirements. The responsibility for design verification is vested in material control, which depends on the proper application of drawings, specifications, manufacturing process controls, and quality assurance programs. The article addresses each of these areas as well as related topics; including stress-induced fatigue failure, tolerances, machining allowances; and the fundamentals of hammer and press forgings, hot upset forgings, and hot extrusion forgings.
1