Skip Nav Destination
Close Modal
Search Results for
ring compression test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 682
Search Results for ring compression test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2005
Fig. 12 A typical calibration curve for the ring compression test. Change in internal ring diameter versus change in specimen height, for a 6:3:2 ring. Source: Ref 21
More
Image
Published: 01 January 2000
Image
Published: 01 January 2000
Fig. 19 Theoretical calibration curves for ring compression test. The ratio is for outside diameter:inside diameter:thickness. (a) 6:3:2 ratio. (b) 6:3:1 ratio. (c) 6:3:0.5 ratio. Source: Ref 4
More
Image
Published: 31 December 2017
Fig. 8 Ring compression test simulations with constant friction at two heat transfer coefficients. (a) U = 5 kW/m 2 °C and m = 0.2 at 20% reduction in thickness. (b) U = 5 kW/m 2 °C and m = 0.2 at 80% reduction in thickness. (c) U = 20 kW/m 2 °C and m = 0.2 at 20% reduction
More
Image
Published: 31 December 2017
Fig. 10 Temperature profiles in simulations of ring compression test. (a) Constant heat transfer coefficient of U = 20 kW/m 2 °C and m = 0.2 at 20% reduction in thickness. (b) Constant heat transfer coefficient of U = 20 kW/m 2 °C and m = 0.2 at 80% reduction in thickness. (c
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009009
EISBN: 978-1-62708-185-6
... Abstract This article describes the use of compression tests, namely, cylindrical compression, ring compression, and plane-strain compression tests at elevated temperatures. It discusses the effects of the temperature, strain rate, and deformation heating on metals during the cylindrical...
Abstract
This article describes the use of compression tests, namely, cylindrical compression, ring compression, and plane-strain compression tests at elevated temperatures. It discusses the effects of the temperature, strain rate, and deformation heating on metals during the cylindrical compression test, with the help of flow curves. The article illustrates the testing apparatus used in the cylindrical compression test. It describes the issues regarding friction and temperature, and strain-rate control with proper test equipment and experimental planning during the ring compression test and plane-strain compression test. The article also reviews the testing conditions, procedures, and advantages of hot plane-strain compression test.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009007
EISBN: 978-1-62708-185-6
..., compression test, and bend test. It examines specialized tests including plane-strain compression test, partial-width indentation test, secondary-tension test, and ring compression test. The article explains that workability is determined by two main factors: the ability to deform without fracture...
Abstract
This article discusses a number of workability tests that are especially applicable to the forging process. The primary tests for workability are those for which the stress state is well known and controlled. The article provides information on the tension test, torsion test, compression test, and bend test. It examines specialized tests including plane-strain compression test, partial-width indentation test, secondary-tension test, and ring compression test. The article explains that workability is determined by two main factors: the ability to deform without fracture and the stress state and friction conditions present in the bulk deformation process. These two factors are described and brought together in an experimental workability analysis.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis. bend test bulk forming processes cracking...
Abstract
This article focuses on the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. It informs that workability depends on the local conditions of stress, strain, strain rate, and temperature in combination with material factors. The article discusses the common testing techniques and process variables for workability prediction. It illustrates the simple and most widely used fracture criterion proposed by Cockcroft and Latham and provides a workability analysis using the fracture limit line. The article describes various workability tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis.
Image
Published: 31 December 2017
Fig. 11 Film thickness and heat transfer coefficient evolution for a ring compression test at 80% reduction in thickness
More
Image
Published: 31 December 2017
Fig. 9 Von Mises strain using varying friction and heat transfer models for a ring compression test. (a) 20% reduction in thickness. (b) 80% reduction in thickness
More
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003294
EISBN: 978-1-62708-176-4
..., and rod impact (Taylor) test. The flyer plate impact test, expanding ring test, split-Hopkinson bar in tension, and a test using a rotating wheel used for high strain rate tension are also discussed. high strain rate compression test cam plastometer test the drop tower compression test flyer...
Abstract
This article reviews high strain rate compression and tension test methods with a focus on the general principles, advantages, and limitations of each test method. The compression test methods are cam plastometer test, drop tower compression test, the Hopkinson bar in compression, and rod impact (Taylor) test. The flyer plate impact test, expanding ring test, split-Hopkinson bar in tension, and a test using a rotating wheel used for high strain rate tension are also discussed.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005417
EISBN: 978-1-62708-196-2
... and motor oil industries, are often inappropriate for the metal-forming industries. Instead, test methods adapted to each class of forming operation are used, such as the ring compression test (forging) ( Ref 2 ), the plane-drawing test or the drawing-under-bending test (drawing) ( Ref 3 ), and the plane...
Abstract
This article examines the deformation processes in metal-forming operations and considers the effects introduced by scale factors when microforming. It discusses the process parameters and variables affecting surface interactions, including temperature, speed, reduction, stiffness, and dynamic response of equipment. The article reviews the determination of friction coefficient using laboratory monitoring methods, indirect measurements, and the inverse method. It considers the determination of the interface heat-transfer coefficient by using the ring test and computer simulations. The article describes the behavior of oxide scale on the surface of hot metal undergoing thermomechanical processing. It concludes with information on the effects of process and material parameters on interfacial phenomena.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003322
EISBN: 978-1-62708-176-4
... ′ 5.8417 A , s −1 1.2519 × 10 16 See Eq 3 Fig. 16 Plot of In( Z ) versus In[sinh(ασ)] to determine the values of n ′ and A Testing for the Friction Coefficient For bulk forming, the friction coefficient can be measured by a ring compression test ( Ref 32...
Abstract
Forming processes can be divided into three major categories: bulk forming, sheet-metal forming, and semisolid forming and polymer extrusion. This article introduces each process category with a description of the constitutive models. It outlines the required properties for process modeling and describes the test methods for determining these properties. The article discusses several compression tests used to determine stress-strain curves for bulk forming and tensile tests used to obtain stress-strain curves for sheet-metal forming. The article concludes with information on the measurement of viscosity of semisolid alloy materials by using three types of viscometers: the coaxial cylinder viscometer, the cone-and-plate viscometer, and the capillary viscometer.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006370
EISBN: 978-1-62708-192-4
... that this characteristic length was the same as the spacing between asperities. Figure 7 shows the results when this model is compared to experiments conducted by Nshama and Jeswiet ( Ref 32 ). Nshama and Jeswiet reported that the average film heat transfer coefficients for unlubricated ring compression tests...
Abstract
This article describes friction force as a function of normal force in dry forming. It focuses on metal forming operations usually classified as cold working and hot working based on metallurgical considerations. The article discusses surface flattening and roughening of workpiece asperities in metal forming. It presents advanced tribology models and results for friction in isothermal forging operations in which the tooling is maintained at a temperature close to that of the workpiece. The article provides information on heat transfer models. It discusses the effect of wear in manufacturing processes. The article concludes with information on the main categories of tool and die materials used for a variety of manufacturing application.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005508
EISBN: 978-1-62708-197-9
... Abstract This article describes the most commonly used test methods for determining flow stress in metal-forming processes. The methods include tension, ring, uniform compression, plane-strain compression, torsion, split-Hopkinson bar, and indentation tests. The article discusses the effect...
Abstract
This article describes the most commonly used test methods for determining flow stress in metal-forming processes. The methods include tension, ring, uniform compression, plane-strain compression, torsion, split-Hopkinson bar, and indentation tests. The article discusses the effect of deformation heating on flow stress. It provides metallurgical considerations at hot working temperatures and presents flow curves at conventional metalworking strain rates. The article describes the effect of microstructural scale, crystallographic texture, and equiaxed phases on flow stress at hot working temperatures. It tabulates a summary of certain values describing the flow stress-strain rate relation for steels, aluminum alloys, copper alloys, titanium alloys, and other metals at various temperatures.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001032
EISBN: 978-1-62708-161-0
... is cut out so that the fracture area can be photographed or traced on an optical comparator. Ring Compression Test When a flat ring-shaped specimen is upset in the axial direction, the resulting change in shape depends only on the amount of compression in the thickness direction and the frictional...
Abstract
This article discusses the bulk formability or workability of steels. It describes their formability characteristics and presents procedures for various formability tests used for carbon and alloy steels. Tests for bulk formability can be divided into two main categories: primary tests and specialized tests. The article compares the processing of microalloyed plate and bar products. The article focuses on the use of torsion testing to evaluate the forgeability of carbon and alloy steels and presents information on measuring flow stress. The article discusses the metallurgy and thermomechanical processing of high-strength low-alloy (microalloyed) steels and the various parts of the rolling operation. The article summarizes some of the common tests for determining formability in open-die and closed-die forgings.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006424
EISBN: 978-1-62708-192-4
... life for a given process. Methods to Measure Lubricant Effectiveness and Wear Measuring Friction for Lubricant Effectiveness In forging, one of the most common ways to measure friction and thus determine the effectiveness of a lubricant is the ring compression test. This technique...
Abstract
Both hot and cold forgings are batch-type processes in which steady-state conditions are never fully achieved and the initial lubricant supply must perform adequately for the duration of the operation. This article discusses methods to measure lubricant effectiveness and wear. It describes the mixed-film lubrication and solid film lubrication in cold forging, as well as solid film lubrication and thick film lubrication in hot forging. The article reviews the factors affecting abrasive wear: die hardness, workpiece temperature, and lubrication and die temperature. It concludes with information on ways to improve resistance to abrasive wear.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003259
EISBN: 978-1-62708-176-4
... and describes gripping techniques of test specimens. It analyzes test diagnostics and reviews the use of computers for gathering and reducing data. Emphasis is placed on universal testing machines with separate discussions of equipment factors for tensile testing and compressing testing. The influence...
Abstract
The article provides an overview of the various types of testing machines: gear-driven or screw-driven machines and servohydraulic machines. It examines force application systems, force measurement, and strain measurement. The article discusses important instrument considerations and describes gripping techniques of test specimens. It analyzes test diagnostics and reviews the use of computers for gathering and reducing data. Emphasis is placed on universal testing machines with separate discussions of equipment factors for tensile testing and compressing testing. The influence of the machine stiffness on the test results is also described, along with a general assessment of test accuracy, precision, and repeatability of modern equipment.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009008
EISBN: 978-1-62708-185-6
... Abstract A cylindrical specimen compressed with friction at the die surfaces does not remain cylindrical in shape but becomes bulged or barreled. Tensile stresses associated with the bulging surface make the upset test a candidate for workability testing. This article discusses test-specimen...
Abstract
A cylindrical specimen compressed with friction at the die surfaces does not remain cylindrical in shape but becomes bulged or barreled. Tensile stresses associated with the bulging surface make the upset test a candidate for workability testing. This article discusses test-specimen geometry and friction conditions; strain measurements; crack detection; and material inhomogeneities, which are to be considered for performing cold upset testing. It describes test characteristics in terms of deformation, free-surface strains, and stress states for performing cylindrical compression tests. The article illustrates the fracture loci in cylindrical, tapered, and flanged upset-test specimens of aluminum alloy and type 1045 cold-finished steel.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003848
EISBN: 978-1-62708-183-2
... conditions for elastomer parts are: Under ambient conditions, low humidity, dark, and ozone and radiation-free environment Stored lying flat, without distortion of the original shape Note that preassembled O-rings, such as in a mechanical seal, will take some compression set during storage...
Abstract
Elastomers belong to a group of materials known as polymers that acquire their properties and strength from their molecular weight, chain entanglements, and crystalline regions. This article focuses on the use of elastomers as seals and describes its performance capabilities from the point of a sealant. The important technical concepts that define the performance capabilities of the elastomeric part include polymer architecture (molecular building blocks), compounding (the ingredients within the polymer), and vulcanization of the elastomer shape. The article discusses the aggressiveness of the chemical environment, temperature, and minor constituents in the environment and in the material itself that affect the chemical resistance of the elastomer. It provides a discussion on performance evaluation methods, namely, immersion testing and application specific testing that are determined using ISO and ASTM standards. The article concludes with information on elastomer failure modes and failure analysis.
1