Skip Nav Destination
Close Modal
By
James R. Ciulik, John A. Shields, Jr., Prabhat Kumar, Todd Leonhardt, John L. Johnson
By
John A. Shields, Jr., Kurt D. Moser, R. William Buckman, Jr., Todd Leonhardt, C. Craig Wojcik
Search Results for
rhenium powders
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 83
Search Results for rhenium powders
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 30 September 2015
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006121
EISBN: 978-1-62708-175-7
.... The effects of processing conditions on the physical and chemical properties of tungsten, molybdenum, tantalum, niobium, and rhenium powders are reviewed. chemical properties molybdenum powders niobium powders physical properties powder production refractory metal powders rhenium powders tantalum...
Abstract
Refractory metals are extracted from ore concentrates or scrap, processed into intermediate chemicals, and then reduced to metal, usually in powder form. This article discusses the raw materials needed and the processing steps for producing pure and alloyed refractory metal powders. The effects of processing conditions on the physical and chemical properties of tungsten, molybdenum, tantalum, niobium, and rhenium powders are reviewed.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006124
EISBN: 978-1-62708-175-7
... as rhenium. molybdenum powders niobium powders pressing refractory metal powders rhenium powders sintering tantalum powders tungsten powders REFRACTORY METAL POWDERS are typically pressed into ingots and sintered into intermediate products. Refractory-metal products are rarely delivered...
Abstract
This article discusses the pressing and sintering of various refractory metal powders for the production of intermediate products as well as special cases of finished products. The metal powders considered include tungsten, molybdenum, tantalum, niobium and their alloys, as well as rhenium.
Book Chapter
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006123
EISBN: 978-1-62708-175-7
... Abstract This article focuses on the selection, properties, and applications of powder metallurgy refractory metals and their alloys, including tungsten, molybdenum, tantalum, niobium, and rhenium. molybdenum niobium powder metallurgy refractory metals rhenium tantalum tungsten...
Abstract
This article focuses on the selection, properties, and applications of powder metallurgy refractory metals and their alloys, including tungsten, molybdenum, tantalum, niobium, and rhenium.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003777
EISBN: 978-1-62708-177-1
... , Volume 2 of ASM Handbook . Powder production and powder metallurgy of refractory metals are described in Powder Metal Technologies and Applications , Volume 7 of ASM Handbook . This article focuses on the refractory metals of niobium, tantalum, molybdenum, tungsten, and rhenium. Other metals...
Abstract
This article describes various procedures used in the metallographic preparation of niobium, tantalum, molybdenum, and tungsten alloys. It provides information on sectioning, grinding, mounting, polishing, and electrolytic etching as well as alternate procedures that have been used on refractory metals. The article presents and analyzes several micrographs, provides etchant formulas for various materials, and discusses the unique characteristics of rhenium and its alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003151
EISBN: 978-1-62708-199-3
... Abstract The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. They are readily degraded by oxidizing environments at moderately low temperatures. Protective coating systems have been developed, mostly for niobium alloys, to permit their use in high-temperature...
Abstract
The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. They are readily degraded by oxidizing environments at moderately low temperatures. Protective coating systems have been developed, mostly for niobium alloys, to permit their use in high-temperature oxidizing aerospace applications. This article discusses the properties, processing, applications, and classes of refractory metals and its alloys, namely molybdenum, tungsten, niobium, tantalum and rhenium. It also provides an outline of the coating processes used to improve their oxidation resistance.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006255
EISBN: 978-1-62708-169-6
... molybdenum alloys niobium niobium alloys refractory metals rhenium tantalum tantalum alloys tungsten tungsten alloys THE REFRACTORY METALS include tungsten, molybdenum, niobium, tantalum, and rhenium. Tungsten, molybdenum, and rhenium are typically processed by pressing and sintering powders...
Abstract
This article briefly discusses the annealing practices for refractory metals such as tungsten, molybdenum, niobium, tantalum, and rhenium and their alloys. It also presents the applications and properties of these metals and their alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001079
EISBN: 978-1-62708-162-7
..., machining, forming, cleaning, joining, and coatings. The article also presents information on, and specifications for, the following metals and their alloys: niobium, tantalum, molybdenum, tungsten, rhenium, and refractory metal fiber-reinforced composites. It discusses the processes involved...
Abstract
All refractory metals, except osmium and iridium, have the highest melting temperatures and lowest vapor pressures of all metals. This article discusses the commercial applications, and production procedures of refractory metals and alloys. These procedures include fabrication, machining, forming, cleaning, joining, and coatings. The article also presents information on, and specifications for, the following metals and their alloys: niobium, tantalum, molybdenum, tungsten, rhenium, and refractory metal fiber-reinforced composites. It discusses the processes involved in their production, their mechanical properties, physical properties, thermal properties, electrical properties, chemical properties, applications, and corrosion resistance.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001426
EISBN: 978-1-62708-173-3
... a large degree of ductility. The only problem that can be encountered is porosity, which often occurs from welding a powder metallurgical product. It has been proposed that tungsten and molybdenum be alloyed with rhenium to improve both room-temperature ductility and weldability. The binary alloy...
Abstract
This article discusses special metallurgical considerations during the fusion welding of refractory metal alloys. These considerations are: microstructure, interstitial impurities, and welding conditions that are considered during the fusion welding of refractory metal alloys, including tantalum, niobium, rhenium, molybdenum, and tungsten. Refractory metal alloys are discussed in the order of decreasing weldability: tantalum, niobium, rhenium, molybdenum, and tungsten.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006133
EISBN: 978-1-62708-175-7
... niobium quality control refractory metal powders rhenium secondary operations tantalum tungsten tungsten heavy alloys welding REFRACTORY METALS are typically processed from powders into ingots that are subsequently swaged into round bars or rolled into plates. Additional rolling, drawing...
Abstract
Refractory metals are typically processed from powders into ingots that are subsequently swaged into round bars or rolled into plates. Secondary operations are required to fabricate more complex refractory metal components. This article discusses two such secondary operations, namely, machining and joining processes for tungsten, tungsten heavy alloys, molybdenum, tantalum, niobium, and rhenium components. It describes the various types of metal joining processes, including mechanical fastening, brazing, and welding.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003994
EISBN: 978-1-62708-185-6
... or slightly higher temperatures than molybdenum or TZM; tungsten-containing alloys are typically forged at temperatures higher than molybdenum or TZM because of their higher strengths, and in the case of tungsten, its lower forgeability. Molybdenum-rhenium alloys can be readily hot worked via extrusion...
Abstract
This article focuses on the forging characteristics of different types of refractory metals and alloys, namely, niobium and niobium alloys, molybdenum and molybdenum alloys, tantalum and tantalum alloys, and tungsten and tungsten alloys.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001283
EISBN: 978-1-62708-170-2
...: Semiconductor and other electronic component manufacturing processes Coatings on tools, bearings, and other wear-resistant parts Optical, opto-electronic, and corrosion-resisting products Monolithic parts, ultrafine powders, and high-strength fibers This article emphasizes the CVD of hard...
Abstract
This article presents the principles of chemical vapor deposition (CVD) with illustrations. It discusses the types of CVD processes, namely, thermal CVD, plasma CVD, laser CVD, closed-reactor CVD, chemical vapor infiltration, and metal-organic CVD. The article reviews the CVD reactions of materials related to hard, tribological, and high-temperature coatings and to free-standing structures. It concludes by reviewing the advantages, disadvantages, and applications of CVD.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003158
EISBN: 978-1-62708-199-3
...-molybdenum, platinel, and tungsten-rhenium thermocouples. This article discusses the basic principles, classification, and properties of thermocouples, and the techniques for insulating and protecting thermocouple wires from the operating environment. electrical insulation environmental protection...
Abstract
Thermocouple devices are the most widely used devices for measurement of temperature in the metals industry. Favorable characteristics of these devices include good accuracy, suitability over a wide temperature range, fast thermal response, ruggedness, high reliability, low cost, and great versatility of application. Thermocouples are grouped into two broad categories, namely, standard thermocouples, including five base-metal thermocouples and three noble-metal thermocouples that have been given letter designations, and nonstandard thermocouples, including iridium-rhodium, platinum-molybdenum, platinel, and tungsten-rhenium thermocouples. This article discusses the basic principles, classification, and properties of thermocouples, and the techniques for insulating and protecting thermocouple wires from the operating environment.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006639
EISBN: 978-1-62708-213-6
.... This is called angle-resolved spectroscopy (AR-XPS), where the specimen is tilted at different angles and analysis is performed, providing more information on the surface or the coating. Powder Specimens Powder samples are mounted and analyzed using adhesive tapes. Because most tapes use organic volatiles...
Abstract
This article focuses on the principles and applications of X-ray photoelectron spectroscopy (XPS) for the analysis of elemental and chemical composition. The discussion covers the nomenclature, instruments, and specimen preparation process of XPS. Some of the factors pertinent to the calibration of materials for accurate measurements using XPS are provided, along with some aspects of the accuracy in quantitative analysis by XPS. In addition, the article presents examples of how XPS data can be used to solve problems with surface interactions.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001098
EISBN: 978-1-62708-162-7
.... Tungsten-Rhenium Three tungsten-rhenium thermocouples are commercially available: W/W-26Re, doped W-3Re/W-25Re, and W-5Re/W-26Re. All three couples have been used at temperatures up to 2760 °C (5000 °F), but they usually are employed only below 2315 °C (4200 °F) due to temperature limitations...
Abstract
This article provides an in-depth review of thermocouples and the metals from which they are made. It explains how dissimilar metal conductors in contact at opposite ends can generate an electromotive force if the junctions are heated or cooled to different temperatures. The article discusses thermocouple circuits and instrumentation, calibration methods, insulation requirements, operating ranges, measurement errors, and maintenance procedures. It also provides property data and emf curves for common metals and thermocouple types, and contains information on color coding used around the world.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003218
EISBN: 978-1-62708-199-3
..., rhenium, niobium, tantalum, zirconium, and hafnium—are deposited using CVD processes. Typical products produced are crucibles, rocket nozzles, and other high-temperature components; linings for chemical vessels; and coatings for electronic components. These refractory metals are deposited at temperatures...
Abstract
Chemical vapor deposition (CVD) involves the formation of a coating by the reaction of the coating substance with the substrate. Serving as an introduction to CVD, the article provides information on metals, ceramics, and diamond films formed by the CVD process. It further discusses the characteristics of different pack cementation processes, including aluminizing, siliconizing, chromizing, boronizing, and multicomponent coating.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003331
EISBN: 978-1-62708-176-4
... Stainless steels, wrought martensitics hardened and tempered 580 180 Rhenium 555 331 Molybdenum and its alloys 555 179 Nickel and its alloys 534 75 Stainless steels, cast 470 130 Tungsten 443 330 Low-alloy steels, wrought; carburized, quenched and tempered 429 212 Copper...
Abstract
This article is a comprehensive collection of tables that list the values for hardness of plastics, rubber, elastomers, and metals. The tables also list the tensile yield strength and tensile modulus of metals and plastics at room temperature. A comparison of various engineering materials, on the basis of tensile strength, is also provided.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002462
EISBN: 978-1-62708-194-8
... wrought forms: forgings, bar, wire, tube, sheet, and foil. In 1995, copper used in wire and cable represented about 50% of U.S. production and in flat products of various thickness another 15%, rod and bar about 14%, tube about 14.5%, with foundries using about 5% for cast products, and metal powder...
Abstract
This article focuses on the monolithic form of nonferrous alloys, including aluminum, copper, nickel, cobalt, titanium, zinc, magnesium, and beryllium alloys. Each metal and alloy offers unique combinations of useful physical, chemical, and structural properties that are made available by its particular composition and the proper choice of processing method. The article describes the composition, designation system, properties, and processing method of these metals and alloys. It discusses the effect of alloying elements in these alloys. The article explains microstructure/property relationships that are used to make specific properties available to the designers of structural applications. It provides examples of phase diagrams that illustrate eutectic and peritectic reactions.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006018
EISBN: 978-1-62708-175-7
... Abstract Metal powders are used as fuels in solid propellants, fillers in various materials, such as polymers or other binder systems, and for material substitution. They are also used in food enrichment, environmental remediation market, and magnetic, electrical, and medical application areas...
Abstract
Metal powders are used as fuels in solid propellants, fillers in various materials, such as polymers or other binder systems, and for material substitution. They are also used in food enrichment, environmental remediation market, and magnetic, electrical, and medical application areas. This article reviews some of the diverse and emerging applications of ferrous and nonferrous powders. It also discusses the functions of copier powders and the processes used frequently for copier powder coating.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006540
EISBN: 978-1-62708-183-2
... 0.001 in. MIL-STD military standard (U.S.) min minimum; minute mm millimeter mol mole MPa megapascal MPIF Metal Powder Industries Association mpy mils per year (mil/yr) mV millivolt n sample size; number of electrons N newton N population size, number of trials; mole fraction; normal (solution); number...
1