Skip Nav Destination
Close Modal
Search Results for
resonant testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 299 Search Results for
resonant testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006953
EISBN: 978-1-62708-439-0
... parts that are identical to the parts to be tested and supposedly flawless or “in family” with the expected or desired production part. The RUS approach relies on the identification of defective parts based on the analysis of the fundamental natural resonant frequencies of their vibrational modes...
Abstract
This article presents the basic principle, characteristics, advantages, and disadvantages of resonant ultrasound spectroscopy (RUS) methods in additive manufacturing. It focuses on the two types of RUS methods: the swept-sine method and the impulse excitation method. Representative significant results for additively manufactured complex parts obtained with the different RUS systems are also shown. The article also presents the basic principle and examples of nonlinear RUS methods.
Image
in Nondestructive Evaluation of Pressed and Sintered Powder Metallurgy Parts[1]
> Nondestructive Evaluation of Materials
Published: 01 August 2018
Image
in Nondestructive Evaluation of Pressed and Sintered Powder Metallurgy Parts[1]
> Nondestructive Evaluation of Materials
Published: 01 August 2018
Image
in Fatigue, Creep Fatigue, and Thermomechanical Fatigue Life Testing
> Mechanical Testing and Evaluation
Published: 01 January 2000
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006445
EISBN: 978-1-62708-190-0
..., and gamma-ray density determination. The article also discusses the methods for automated nondestructive testing of pressed and sintered PM parts: acoustic methods-resonance testing, eddy current testing, magnetic bridge comparator testing, ultrasonic techniques, radiographic techniques, gamma-ray density...
Abstract
The potential for introducing defects during processing becomes greater as the relative density of pressed and sintered powder metallurgy (PM) parts increases and more multilevel parts with complex geometric shapes are produced. This article discusses the potential defects in pressed and sintered PM parts: density variations, compaction and ejection cracks, microlaminations, poor degree of sintering, and voids from prior lubricant agglomerates. It describes the various methods applicable to green compacts: direct-current resistivity testing, radiographic techniques, computed tomography, and gamma-ray density determination. The article also discusses the methods for automated nondestructive testing of pressed and sintered PM parts: acoustic methods-resonance testing, eddy current testing, magnetic bridge comparator testing, ultrasonic techniques, radiographic techniques, gamma-ray density determination, and visual inspection.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005341
EISBN: 978-1-62708-187-0
... Abstract The commonly used nondestructive testing of cast products include liquid penetrant inspection, radiographic inspection, fluoroscopic inspection and automated defect recognition, ultrasonic inspection, eddy current inspection, process-controlled resonant testing (PCRT), leak test...
Abstract
The commonly used nondestructive testing of cast products include liquid penetrant inspection, radiographic inspection, fluoroscopic inspection and automated defect recognition, ultrasonic inspection, eddy current inspection, process-controlled resonant testing (PCRT), leak test, and electrical conductivity measurements. This article summarizes the application of these nondestructive tests to castings. It also tabulates a partial list of automotive part types and materials amenable to PCRT and lists the potential limitations to the use of PCRT.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006336
EISBN: 978-1-62708-179-5
..., or number of these anomalies exceeds the maximum allowed by the purchaser. The nondestructive methods include visual inspection, dimensional inspection, liquid penetrant inspection, magnetic-particle inspection, eddy-current inspection, radiographic inspection, ultrasonic inspection, resonant testing...
Abstract
Nondestructive inspection (NDI) methods for cast iron are used to ensure that the parts supplied perform as required by the purchaser. This article focuses on the principal nondestructive methods used to inspect for anomalies in cast irons and to determine if the volume, shape, size, or number of these anomalies exceeds the maximum allowed by the purchaser. The nondestructive methods include visual inspection, dimensional inspection, liquid penetrant inspection, magnetic-particle inspection, eddy-current inspection, radiographic inspection, ultrasonic inspection, resonant testing, and leak testing. The technique, strengths, and weaknesses of each of the nondestructive methods are also discussed.
Image
in Resonant Ultrasound Spectroscopy Testing Methods in Additive Manufacturing
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 5 (a) Resonant ultrasound spectroscopy setup used by The Modal Shop to test the stainless steel star artifacts. (b) Spectra of a reference star (in blue) and a defective star (in red) as well as defined criteria (vertical green)
More
Image
in Resonant Ultrasound Spectroscopy Testing Methods in Additive Manufacturing
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 6 (a) Resonant ultrasound spectroscopy setup used by Vibrant to test the stainless steel star artifacts. (b) Portion of spectra of four reference stars (in green) and four defective stars (in red)
More
Image
Published: 31 August 2017
Fig. 38 Strength versus resonant frequency in spheroidal graphite iron test bars. Source: Ref 85
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001750
EISBN: 978-1-62708-178-8
.... The measurement is easiest to conduct with fluorescent materials having relatively long-lived excited states. Optical detection of ESR can be quite sensitive if the optical excited state can be populated appreciably. Optical double magnetic resonance is not ordinarily used for routine testing and is usually...
Abstract
Electron spin resonance (ESR), or electron paramagnetic resonance (EPR), is an analytical technique that can extract a great deal of information from any material containing unpaired electrons. This article explains how ESR works and where it applies in materials characterization. It describes a typical ESR spectrometer and explains how to tune it to optimize critical electromagnetic interactions in the test sample. It also identifies compounds and elements most suited for ESR analysis and explains how to extract supplementary information from test samples based on the time it takes electrons to return to equilibrium from their resonant state. Two of the most common methods for measuring this relaxation time are presented as are several application examples.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003315
EISBN: 978-1-62708-176-4
... Development of higher-frequency testing machines began early in the 20th century. Prior to 1911, the highest fatigue testing frequency was on the order of 33 Hz, using mechanically driven systems. Electrodynamic resonance systems appeared in 1911 when Hopkinson ( Ref 1 ) introduced a machine capable of 116 Hz...
Abstract
This article discusses the underlying concepts and basic techniques for performing ultrasonic fatigue tests and describes test equipment design, specimen design, and effective control over test variables. It reviews the results obtained with ultrasonic fatigue test methods with respect to strain-rate-dependent material behavior. The article also provides information on the applications of the ultrasonic fatigue test.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003237
EISBN: 978-1-62708-199-3
... includes the acoustic-emission resonant sensor. acoustic-emission inspection acoustic-emission resonant sensor burst-type emissions continuous emissions discontinuity inspection instrumentation nondestructive testing method structural testing ACOUSTIC EMISSION is defined as the high...
Abstract
Acoustic-emission inspection detects and analyzes minute acoustic-emission signals generated by discontinuities in materials under applied stress. This article discusses the types of acoustic emissions (continuous-type emissions and burst-type emissions) and applications, including laboratory testing, production testing, and structural testing. The article includes a section in which the characteristics of acoustic emission inspection are compared with other nondestructive testing methods. Further, it briefly reviews the key elements of the acoustic-emission instrumentation, which includes the acoustic-emission resonant sensor.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002360
EISBN: 978-1-62708-193-1
...-displacement, forced-vibration, rotational-bending, resonance, and servomechanical systems for various loading conditions are also discussed. crack growth data crack length electric potential difference fatigue crack growth rate testing forced-displacement system forced-vibration system resonance...
Abstract
This article describes the fracture mechanics in fatigue. It discusses the fatigue crack growth rate (FCGR) testing that consists of several steps, beginning with selecting the specimen size, geometry, and crack length measurement technique. The two major aspects of FCGR test analysis are to ensure suitability of the test data and to calculate growth rates from the data. The article presents an analysis of the crack growth data. Optical, compliance, and electric potential difference are the most common laboratory techniques, and the article reviews their merits and limitations. Forced-displacement, forced-vibration, rotational-bending, resonance, and servomechanical systems for various loading conditions are also discussed.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001737
EISBN: 978-1-62708-178-8
... discusses the basic principles of spark source technique; SSMS instrumentation such as ion source, electric sector, and magnetic sector; sample preparation; and test procedures of SSMS. Some of the related techniques to SSMS are laser ionization mass spectrometry and laser-induced resonance ionization mass...
Abstract
Spark source mass spectrometry (SSMS) is an analytical technique used for determining the concentration of elements in a wide range of solid samples, including metals, semiconductors, ceramics, geological and biological materials, and air and water pollution samples. This article discusses the basic principles of spark source technique; SSMS instrumentation such as ion source, electric sector, and magnetic sector; sample preparation; and test procedures of SSMS. Some of the related techniques to SSMS are laser ionization mass spectrometry and laser-induced resonance ionization mass spectrometry. The ions produced in SSMS are detected by either the photometric method or electrical detection method and quantitatively measured by techniques such as internal standardization techniques, isotope dilution, multi element isotope dilution, and dry spike isotope dilution. The detected spark source spectrum contains all the elemental data of the tested sample. Finally, the article exemplifies the applications of SSMS.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006444
EISBN: 978-1-62708-190-0
... the vibrothermography test covers the entire area of interest on the sample, that is, that a crack would be found regardless of its location. Resonant modes have nodal regions where vibrational stress level is low and where a crack may be missed. Therefore, if the excitation system generates only a small number...
Abstract
Vibrothermography, also known as sonic thermography, sonic infrared (IR), thermosonics, and vibroacoustic thermography, is a nondestructive evaluation (NDE) technique for finding cracks and delaminations through vibration-induced heating. This article describes the four parts of the vibrothermography process: vibration of the specimen by a transducer; conversion of vibrational energy into heat by a crack, delamination, and other contacting surfaces; conduction of the heat to an external surface; and infrared detection of the heat with a thermal camera.
Image
Published: 01 December 2008
Fig. 23 Tensile and yield strength of spheroidal graphite iron test bars versus resonant frequency. Source: Ref 55
More
Image
in Resonant Ultrasound Spectroscopy Testing Methods in Additive Manufacturing
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 11 (a) System used by Polytec to test the CoCr lattice structures. (b) Images of the vibrational modes of the lattices at different resonant frequencies. Image (b) courtesy of Polytec
More
Image
Published: 01 January 2000
Fig. 6 Oscilloscope record of load cell force versus time during a dynamic tension test depicting the phenomenon of ringing. The uncontrolled oscillations result when the loading rate is near the resonant frequency of the load cell. The scales are arbitrary. Source: Ref 5
More
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007023
EISBN: 978-1-62708-439-0
... and Computed Tomography in Additive Manufacturing ,” and “ Resonant Ultrasound Spectroscopy Testing Methods in Additive Manufacturing .” This article covers defect formation and classification, followed by a brief description of the most common NDT methods used for postbuild inspection. Descriptions...
Abstract
This article covers defect formation and classification, followed by a brief description of the most common nondestructive testing (NDT) methods used for postbuild inspection. Descriptions of the established and emerging NDT techniques for in-process monitoring (IPM) and in-process inspection (IPI) in additive manufacturing (AM) also are provided, highlighting the advantages and limitations. The article concludes with a list of the main NDT methods and techniques used. As qualification and certification of AM parts is an urgent matter for the AM industry, a description of the current work carried out for developing standards is also included.
1