Skip Nav Destination
Close Modal
Search Results for
resintering
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 22
Search Results for resintering
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 30 September 2015
Fig. 25 Effect of coining and resintering on electrical conductivity. Source: Ref 14
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002374
EISBN: 978-1-62708-193-1
... and fracture resistance of P/M materials. It reviews the methods employed to improve fatigue and fracture resistance, including carbonitriding, surface strengthening and sealing treatments, shot-peening, case hardening, repressing and resintering, coining, sizing, and postsintering heat treatments. Safety...
Abstract
This article discusses the fracture and fatigue properties of powder metallurgy (P/M) materials depending on the microstructure. It describes the effects of porosity on the P/M processes relevant to fatigue and fracture resistance. The article details the factors determining fatigue and fracture resistance of P/M materials. It reviews the methods employed to improve fatigue and fracture resistance, including carbonitriding, surface strengthening and sealing treatments, shot-peening, case hardening, repressing and resintering, coining, sizing, and postsintering heat treatments. Safety factors for P/M materials are also detailed.
Image
Published: 01 December 2004
Fig. 53 High-leaded tin bronze liner (SAE 485); prealloyed powder, sintered on a steel backing strip (bottom), cold rolled, resintered. Copper grains; intergranular lead (black). See also Fig. 54 . NH 4 OH + H 2 O 2 . Original magnification 100×
More
Image
Published: 01 December 1998
Fig. 20 The effect of re-pressing on density of P/M compacts. Alloy steel powders (4640 composition) were compacted at various pressures, then sintered, re-pressed, and resintered. For each specimen, the final density is indicated by the intersection between the curve that indicates the re
More
Image
in Ferrous Powder Metallurgy Materials
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 14 Effect of re-pressing on density of powder metallurgy compacts. Alloy steel powders (4640 composition) were compacted at various pressures, then sintered, re-pressed, and resintered. For each specimen, the final density is indicated by the intersection between the curve that indicates
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003112
EISBN: 978-1-62708-199-3
... tolerances) for a part exceed the capabilities of compacted-and-sintered parts, and one or more secondary operations are required. Some of the common secondary operations are: Re-pressing: To increase density as well as strength and ductility; may or may not be accompanied by resintering. Also...
Abstract
Iron powders are the most widely used powder metallurgy (P/M) material for structural parts. This article reviews low to medium density iron and low-alloy steel parts produced by the pressing and sintering technology. It explains different powder production methods, including Hoeganaes process, Pyron process, atomization of liquid metal, thermal decomposition and the electrodeposition process for carbonyl and electrolytic iron powders. It describes the types of compaction and sintering, explaining their effects of processing with designations. Further, the article deals with the mechanical and physical properties of ferrous P/M materials, which may depend on certain factors, namely microstructure, porosity, density, infiltration, re-pressing, chemical composition, and heat treatment.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001044
EISBN: 978-1-62708-161-0
...-pressing is intended to change the contour of the surface in contact with the punches, it is termed coining. For example, a sintered blank could be coined so that the surface is indented with small slots or letters and numbers. The re-pressing may be followed by resintering, which relieves the stresses due...
Abstract
Certain metal products can be produced only by powder metallurgy; among these products are materials whose porosity is controlled. Successful production by powder metallurgy depends on the proper selection and control of process variables: powder characteristics; powder preparation; type of compacting press; design of compacting tools and dies; type of sintering furnace; composition of the sintering atmosphere; choice of production cycle, including sintering time and temperature; and secondary operations and heat treatment. When the application of a powder metallurgy part requires high levels of strength, toughness, or hardness, the mechanical properties can be improved or modified by infiltration, heat treatment, or a secondary mechanical forming operation such as cold re-pressing or powder forging. The article also discusses the effect of the secondary processes on P/M mechanical properties.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003121
EISBN: 978-1-62708-199-3
... sintering, the compacts consolidate and strengthen. The density of sintered compacts may be increased by re-pressing the P/M compact. Re-pressing may be followed by resintering, which relieves stresses induced by cold work and may further consolidate the structure. By pressing and sintering only, parts...
Abstract
Aluminum and its alloys are used in a broad range of applications. This article discusses the primary and secondary production of aluminum and the classification system for cast and wrought products. It describes some of the more common manufactured forms, including commercial wrought aluminum products, aluminum alloy engineered castings, powder metallurgy parts, and metal-matrix composites. The article also reviews fabrication characteristics such as machining, forming, forging, and joining. It concludes with a description of the major industrial applications of wrought and cast aluminum alloys.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003773
EISBN: 978-1-62708-177-1
... liner (SAE 485); prealloyed powder, sintered on a steel backing strip (bottom), cold rolled, resintered. Copper grains; intergranular lead (black). See also Fig. 54 . NH 4 OH + H 2 O 2 . Original magnification 100× Fig. 54 Same as Fig. 53 , but higher magnification reveals the details...
Abstract
This article describes the various specimen preparation procedures for lead, lead alloys, and sleeve bearings, including sectioning, mounting, grinding, polishing, and etching. The microscopic examination and microstructures of lead and lead alloys are discussed. The article also provides information on the microstructures of sleeve bearing materials.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006139
EISBN: 978-1-62708-175-7
... by the electrolytic process, must be used. Figure 24 shows the relationship between electrical conductivity and sintered density; high conductivity can be achieved only in high-density compacts. Electrical conductivity can be increased by coining and resintering...
Abstract
This article describes the fundamentals of various techniques used for the production of copper and copper alloy powders. These include atomization (water, air, and gas), oxide reduction, and electrolysis. The article discusses the effects of electrolyte composition and operating conditions on the characteristics of copper and copper alloy powders.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001057
EISBN: 978-1-62708-162-7
... of sintered compacts may be increased by re-pressing. When re-pressing is performed primarily to improve dimensional accuracy, it is termed “sizing;” when performed to alter configuration, it is termed “coining.” Re-pressing may be followed by resintering, which relieves stresses induced by cold work and may...
Abstract
Aluminum, the second most plentiful metallic element, is an economic competitor in various applications owing to its appearance, light weight, fabricability, physical properties, mechanical properties, and corrosion resistance. This article discusses the primary and secondary production of aluminum and classification system for cast and wrought aluminum alloys. It talks about various manufactured forms of aluminum and its alloys, which are classified into standardized products such as sheet, plate, foil, rod, bar, wire, tube, pipe, and structural forms, and engineered products such as extruded shapes, forgings, impacts, castings, stampings, powder metallurgy parts, machined parts, and metal-matrix composites. The article also reviews important fabrication characteristics in the machining, forming, forging, and joining of aluminum alloys. It concludes with a description of the major industrial applications of aluminum, including building and construction, transportation, consumer durables, electrical, machinery and equipment, containers and packaging, and other applications.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006412
EISBN: 978-1-62708-192-4
Abstract
A sliding bearing (plain bearing) is a machine element designed to transmit loads or reaction forces to a shaft that rotates relative to the bearing. This article discusses the properties of bearing materials. It provides information on bearing material systems: single-metal systems, bimetal systems, and trimetal systems. The article describes the designations, nominal compositions, mechanical properties, and applications of various sliding bearing alloys: tin-base alloys, lead-base alloys, copper-base alloys, aluminum-base alloys, silver-base alloys, zinc-base alloys, additional metallic materials, nonmetallic materials. It describes casting processes, powder metallurgy processes, and electroplating processes. The article also discusses the selection criteria for bearing materials.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002486
EISBN: 978-1-62708-194-8
... or a “high-temperature” process needed? Will a repressing-resintering process be necessary to achieve the density selected? What secondary processing treatments are needed, and how will the density affect these processes? Using a standard press-and-sinter process as a baseline, the cost of high-temperature...
Abstract
This article begins with a discussion on general powder metallurgy design considerations that assist in the selection of the appropriate processing method. It reviews powder processing techniques, conventional press-and-sinter methods, and full-density processes to understand the design restrictions of each powder processing method. The article provides comparison of powder processing methods based on their similarities, differences, advantages, and disadvantages. It concludes with a discussion on design issues for the components of powder processing technologies.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003135
EISBN: 978-1-62708-199-3
..., resintering, and annealing. The end product has a residual porosity of ∼0.25%. Blanks of suitable size are cut from the bimetallic strip, formed, and drilled with oil holes or machined to form suitable grooves. These materials include Cu-25Pb-0.5Sn, Cu-25Pb-3.5Sn, Cu-10Pb-10Sn, and Cu-50P-1.5Sn alloys...
Abstract
This article discusses the characteristics, properties, and production methods of copper powders and copper alloy powders. Bulk of the discussion is devoted to production and applications of powder metallurgy (P/M) parts, including pure copper P/M parts, bronze P/M parts, brass and nickel silver P/M parts, copper-nickel P/M parts, copper-lead P/M parts, copper-base P/M friction materials, copper-base P/M electrical contact materials, copper-base P/M brush materials, infiltrated parts, and oxide-dispersion-strengthened copper P/M materials.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001064
EISBN: 978-1-62708-162-7
Abstract
This article discusses the applications of high-strength aluminum powder metallurgy (P/M) alloys, detailing the advantages, properties, and the various steps involved in P/M technology, including powder production, powder processing, and degassing and consolidation. Three areas of design efforts to push the inherent advantages of aluminum alloys to new limits are also covered: high ambient-temperature strength with improved corrosion and stress corrosion cracking resistance; improved elevated-temperature properties so aluminum alloys can more effectively compete with titanium alloys; and increased stiffness and/or reduced density for aluminum alloys to compete with organic composites. An appendix provides a detailed account of the properties, processing, and applications of conventionally pressed and sintered aluminum P/M alloys.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005612
EISBN: 978-1-62708-174-0
... to room temperature and then resintered in H 2 at 1875 °C (3405 °F) for 3 h for grain growth. As expected, the best results (as indicated by minimal interfacial porosity and grain growth across the original interface) were achieved at the higher temperatures and pressures. The study also showed...
Abstract
This article describes the solid-phase and liquid-phase processes involved in diffusion bonding of metals. It provides a detailed discussion on the diffusion bonding of steels and their alloys, nonferrous alloys, and dissimilar metals. Ceramic-ceramic diffusion welding and a variation on this process in which ceramic powder compacts are simultaneously sintered and bonded are also discussed.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006132
EISBN: 978-1-62708-175-7
... takes place during the repressing stage and increased densification is a primary goal, a heat treatment step may be needed to soften the aluminum alloy. Additional consolidation may be achieved by resintering, depending on the specific alloy composition and the time and temperature used. The soft...
Abstract
The powder metallurgy (PM) process is a relatively efficient and economic process that can be used to produce high quantities of aluminum components with a reasonable degree of precision and finds application in camshaft bearing cap (cam cap) production. The article discusses the production steps involved in cam cap manufacturing: powder production, compaction, sintering, repressing, and heat treatment. In addition, it reviews the R&D work involved in improving the structural properties of emerging aluminum alloy systems.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001457
EISBN: 978-1-62708-173-3
... the same effect. Joints made with resintered samples of this alumina were much stronger than those made with ground material, but not as strong as those made with unground or ground/lapped alumina. It is assumed that the amount of glassy phase in the 99.5% alumina was insufficient to heal or blunt many...
Abstract
This article is intended to assist the development of procedures for the brazing of ceramic-to-ceramic or ceramic-to-metal joints for service under elevated temperatures, mechanical or thermal stresses, or corrosive atmospheres. It describes the factors considered in preparing a procedure for the brazing of graphitic materials.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006497
EISBN: 978-1-62708-207-5
... treatment step may be needed to soften the aluminum alloy. Additional consolidation may be achieved by resintering, depending on the specific alloy composition and the time and temperature used. The soft and ductile nature of PM aluminum alloys means that cold or hot forging of the material is possible...
Abstract
Aluminum powders can be formed into components by several competing technologies, including powder metallurgy (PM), metal injection molding, powder forging, and additive manufacturing. This article explores PM methodologies that are being exploited to manufacture such components. It reviews emerging technologies that promise to offer exciting ways to produce aluminum parts. The article discusses the various steps involved in PM, such as powder production, compaction, sintering, repressing, and heat treatment. It provides information on aluminum production statistics and the wear-resistance applications of PM.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006422
EISBN: 978-1-62708-192-4
Abstract
Rolling is the process of reducing the thickness or changing the cross section of a workpiece by compressive forces applied through a set of rolls. This article emphasizes flat rolling and illustrates basic flat-rolling process used to reduce the thickness of a rectangular cross section. It provides a discussion on hot rolling, cold rolling, and warm rolling, as well as lubrication in rolling. The article reviews the lubrication for iron-base and nickel-base materials, light metals, copper-base alloys, and titanium alloys. It discusses the wear mechanism in rolling: abrasion, adhesion, and fatigue, as well as oxidative and corrosive wear. Surface modification techniques, such as hardening by induction heat treating, weld overlay, thermal spray coating, coating via physical vapor deposition (PVD), and laser surface treatment, are also discussed for improving roll service life.
1