Skip Nav Destination
Close Modal
By
C.D. Rudd
By
Brian S. Hayes, Luther M. Gammon
By
Anthony J. Vizzini
Search Results for
resin transfer molding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 332
Search Results for resin transfer molding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Resin Transfer Molding and Structural Reaction Injection Molding
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003413
EISBN: 978-1-62708-195-5
... Abstract Resin transfer molding and structural reaction injection molding belong to a family, sometimes denoted as liquid composite molding. This article provides information on the characteristics and automotive and aerospace applications of liquid composite molding. It reviews techniques...
Abstract
Resin transfer molding and structural reaction injection molding belong to a family, sometimes denoted as liquid composite molding. This article provides information on the characteristics and automotive and aerospace applications of liquid composite molding. It reviews techniques that use hard tooling and positive (superatmospheric) pressures to produce structures. The techniques include vacuum-assisted resin injection, vacuum infusion, resin-film infusion, and injection-compression molding. The article provides an overview of the materials that are commonly used together with some of processing characteristics that are important to processing speed and part quality. It concludes with a discussion on design guidelines for the liquid composite molding.
Book Chapter
Resin Transfer Molding and Structural Reaction Injection Molding
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003020
EISBN: 978-1-62708-200-6
... Abstract Resin transfer molding (RTM) and structural reaction injection molding (SRIM) are two similar processes that are well suited to the manufacture of large, complex, and high-performance structures. This article discusses the similarities and differences of RTM and SRIM processes...
Abstract
Resin transfer molding (RTM) and structural reaction injection molding (SRIM) are two similar processes that are well suited to the manufacture of large, complex, and high-performance structures. This article discusses the similarities and differences of RTM and SRIM processes and the unique design considerations with respect to the physical properties, geometry, surface quality, process economics, equipment, and tooling of a component that should be considered in choosing RTM or SRIM over other competing processes for fabricating reinforced components.
Image
in Resin Transfer Molding and Structural Reaction Injection Molding
> Engineered Materials Handbook Desk Edition
Published: 01 November 1995
Image
Published: 01 January 2001
Image
Published: 01 January 1997
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003398
EISBN: 978-1-62708-195-5
... the resin selection in designing the composite for use in a particular application. The article illustrates the various methods that are used to process a composite component, namely, wet lay-up, autoclave, resin transfer molding, and vacuum-assisted resin transfer molding. It provides a discussion...
Abstract
This article presents the basic guidelines considered in designing a composite structure, and the basic definitions of terms that apply to composites. It describes the analysis of a composite laminate based on stress-strain relationships, stress-strain load relationships, general load displacement case, and general load case solution. Factors affecting the composite materials properties and allowables of fiber-reinforced polymers are reviewed. The article discusses the process considerations for mold design, such as master model, metal tooling, composite tooling, and tool care. It explains the resin selection in designing the composite for use in a particular application. The article illustrates the various methods that are used to process a composite component, namely, wet lay-up, autoclave, resin transfer molding, and vacuum-assisted resin transfer molding. It provides a discussion on electromagnetic interference shielding, electrostatic discharge protection, metal plating, fire resistance, and corrosion resistance on composite materials.
Book Chapter
Introduction—Composite Materials and Optical Microscopy
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009071
EISBN: 978-1-62708-177-1
... transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which...
Abstract
This article illustrates the polymer matrices used for composite materials. It describes the use of prepeg materials in manufacturing high-performance composites. The article discusses the various infusion processes for the development of fiber-reinforced composites, namely, resin transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which provides an insight into the micro- and macrostructure of fiber-reinforced composites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003414
EISBN: 978-1-62708-195-5
... Abstract Vacuum infusion is a resin injection technique derived from resin transfer molding. This article discusses the characteristics of the technique and its applications. It presents the theory and background of the technique and provides an illustration of how parts are made. The article...
Abstract
Vacuum infusion is a resin injection technique derived from resin transfer molding. This article discusses the characteristics of the technique and its applications. It presents the theory and background of the technique and provides an illustration of how parts are made. The article provides information on the equipment and material used for vacuum infusion. It describes the mechanical properties of components and summarizes the influence of production on the properties. The article concludes with a discussion on design guidelines.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003394
EISBN: 978-1-62708-195-5
..., the resin transfer molding interface, the fiber placement and tape-laying interface, and the laser projection interface. continuous fiber composite material fabric deformation core sample flat-pattern evaluation laminate surface offset structural analysis interface resin transfer molding...
Abstract
Continuous fiber composite materials offer dramatic opportunities for producing lightweight laminates with tremendous performance capabilities. This article describes the kinematics of fabric deformation and explains the algorithms used in draping simulation. It discusses the basic components, such as laminate and ply, of continuous fiber composite. The article provides information on the core sample and ply analysis. It details producibility, flat-pattern evaluations, and laminate surface offset. The article discusses various interfaces, such as the structural analysis interface, the resin transfer molding interface, the fiber placement and tape-laying interface, and the laser projection interface.
Book Chapter
Bismaleimide Resins
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003364
EISBN: 978-1-62708-195-5
... the mechanical properties of BMI composites. BMIs suitable for resin transfer molding processing are provided. The article concludes with information on the elevated-temperature applications of 5250-4 BMI system. bismaleimide resin composites mechanical properties resin transfer molding elevated...
Abstract
This article discusses bismaleimide (BMI) chemistry and the use of BMI in composites. An analysis of the applications illustrates how the advantages of BMIs have been exploited and perhaps suggests how these advantages might be extended to other applications. The article describes the mechanical properties of BMI composites. BMIs suitable for resin transfer molding processing are provided. The article concludes with information on the elevated-temperature applications of 5250-4 BMI system.
Image
Finite-element mesh (left) and resin flow-front simulation (right) for resi...
Available to PurchasePublished: 01 January 2001
Fig. 12 Finite-element mesh (left) and resin flow-front simulation (right) for resin transfer molding injection
More
Image
Production volume and relative part performance that can be achieved with v...
Available to PurchasePublished: 01 January 2001
Fig. 1 Production volume and relative part performance that can be achieved with various production techniques. SMC, sheet molding compounds; GMT, glass mat thermoplastics; RTM, resin transfer molding; SRIM, structural reaction injection molding; P/T, pressure/temperature
More
Image
Design methodology for automotive composite structures. RTM, resin transfer...
Available to PurchasePublished: 01 January 2001
Fig. 4 Design methodology for automotive composite structures. RTM, resin transfer molding; SRIM, structural reaction injection molding; CAD, computer-aided design; CAE, computer-aided engineering; TGA, thermogravimetric analysis; DSC, differential scanning calorimetry
More
Image
Micrograph of a cross section obtained from a carbon/epoxy, resin transfer ...
Available to PurchasePublished: 01 January 2001
Fig. 7 Micrograph of a cross section obtained from a carbon/epoxy, resin transfer molded component
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002491
EISBN: 978-1-62708-194-8
... … Resin transfer molding 0.1 0.015 10 1120 … … n y n y n y n n y y High-speed resin transfer molding or fast resinject 2 0.3 30 3370 … … n y n y n y n n y y Foam polyurethane 0.5 0.07 n/a … … … n y y y y y n n y y Reinforced foam 1 0.15 30 3370...
Abstract
This article describes key processing methods and related design, manufacturing, and application considerations for plastic parts. The methods include injection molding, extrusion, thermoforming, blow molding, rotational molding, compression molding/transfer molding, composites processing, and casting. The article describes principal features incorporated into the design of plastic parts. It concludes with a discussion on the materials selection methodology for plastics.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003402
EISBN: 978-1-62708-195-5
... ). The fundamentals in building process models for polymer-composite manufacturing methods, such as injection molding, pultrusion, and resin transfer molding are outlined in this section. Composites processing models are built on the foundation of physical laws, appropriate assumptions, and boundary conditions...
Abstract
This article provides information on the classification of various composites manufacturing processes based on similar transport processes. The composites manufacturing processes can be grouped into three categories: short-fiber suspension methods, squeeze flow methods, and porous media methods. The article presents an overview of the modeling philosophy and approach that is useful in describing composite manufacturing processes.
Book Chapter
Abbreviations, Symbols, and Tradenames: Composites
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0005754
EISBN: 978-1-62708-195-5
... temperature P applied load; pressure RTD room temperature, dry corrosion cracking Pa pascal RTM resin transfer molding Kt stress-concentration factor PA polyamide RTW room temperature, wet Kth threshold crack tip stress-intensity factor PAI polyamide-imide RTV room temperature, vulcanizing kg kilogram PAN...
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003392
EISBN: 978-1-62708-195-5
... methods: Wet lay-up, prepreg lay-up, fiber placement, tape lay-up, pultrusion, resin transfer molding (RTM), vacuum- assisted resin transfer molding, filament winding, compression molding, injection molding, centrifugal casting Processing equipment: Vacuum bagging, molds, ovens, autoclaves, presses...
Abstract
This article describes common design criteria and identifies the design considerations that have a significant effect on the end product. The design criteria include cost, size, mechanical properties, repeatability and precision of parts, damage tolerance and durability, and environmental constraints.
Book Chapter
Function and Properties Factors in Plastics Processing Selection
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006935
EISBN: 978-1-62708-395-9
... for such processes as resin transfer molding and pultrusion, in which the resin must flow through preplaced glass reinforcements. For other processes, such as extra-high-strength molding compound and prepreg compression molding, the resin must be thickened by reaction to stay on the glass reinforcements. With sheet...
Abstract
Manufacturing process selection is a critical step in plastic product design. The article provides an overview of the functional requirements that a part must fulfil before process selection is attempted. A brief discussion on the effects of individual thermoplastic and thermosetting processes on plastic parts and the material properties is presented. The article presents process effects on molecular orientation. It also illustrates the thinking that goes into the selection of processes for size, shape, and design factors. Finally, the article describes how various processes handle reinforcement.
Book Chapter
Design, Tooling, and Manufacturing Interaction
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003395
EISBN: 978-1-62708-195-5
... for resin transfer molding often utilizes a “tackifier” compound in the form of a liquid or powder to add tack to otherwise tack-free materials. The ability of the material (fabric, with or without resin) to conform to the shape of the mold is called drape . The greater the drape is, the more contour...
Abstract
Designing composites for structural performance initially involves meeting a set of desired performance specifications at a minimum cost. This article discusses the factors that are considered in designing the manufacturing of polymeric composites. It describes the various aspects of manufacturing, forming process, and post-processing and fabrication for designing the composites.
1