Skip Nav Destination
Close Modal
Search Results for
research grades
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 913 Search Results for
research grades
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Laser-Induced Forward Transfer Processes in Additive Manufacturing
> Additive Manufacturing Processes
Published: 15 June 2020
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001089
EISBN: 978-1-62708-162-7
..., and lutetium. This article classifies the rare earth metals based on their purity level, which are designated as research grades (>99.8% pure) and commercial grades (95% - 98% pure), and describes the preparation and purification, including solid-state electrolysis. It further discusses physical, mechanical...
Abstract
Rare earth metals belong to Group IIIA of the periodic table that includes scandium, yttrium, and the lanthanide elements which are lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. This article classifies the rare earth metals based on their purity level, which are designated as research grades (>99.8% pure) and commercial grades (95% - 98% pure), and describes the preparation and purification, including solid-state electrolysis. It further discusses physical, mechanical, and chemical properties; electronic configurations; crystal structures, and explains the alloy forming characteristics of rare earth elements. The article concludes by describing the various applications of commercial-grade rare earth elements and commercial alloys, which incorporates rare earth elements as additives.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001091
EISBN: 978-1-62708-162-7
.... This article discusses the uses of gallium in optoelectronic devices and integrated circuits and applications of gallium. The article discusses the properties and grades of gallium arsenide and also provides information on resources of gallium. The article talks about the recovery techniques, including...
Abstract
Gallium-base components can be found in a variety of products ranging from compact disk players to advanced military electronic warfare systems, owing to the factor that it can emit light, has a greater resistance to radiation and operates at faster speeds and higher temperatures. This article discusses the uses of gallium in optoelectronic devices and integrated circuits and applications of gallium. The article discusses the properties and grades of gallium arsenide and also provides information on resources of gallium. The article talks about the recovery techniques, including recovery from bauxite, zinc ore and secondary recovery process and purification. The article briefly describes the fabrication process of gallium arsenide crystals. Furthermore, the article gives a short note on world supply and demand of gallium and concludes with research and development on gallium arsenide integrated circuits.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002190
EISBN: 978-1-62708-188-7
... (0.001) (0.0015) (0.002) (0.002) (0.0015) (0.0015) (0.001) (0.001) (C-2) (a) Use submicron carbide when the recommended carbide grade chips excessively. (b) Any premium high-speed steel (T15, M33, M41-47, or S9, S10, S11, S12). Source: Metcut Research Associates Inc. Fig. 1...
Abstract
This article describes various machining techniques of refractory metals, namely, niobium, molybdenum, tantalum, and tungsten. These include turning, boring, trepanning, reaming, milling, tapping, drilling, and sawing. Parameters for the machining of the refractory metals are also tabulated. In addition, the article provides information on cutting fluids and tools that are used in machining of the refractory metals as well as on the safety precautions to be followed in the machining process.
Image
Published: 01 January 1990
Fig. 2 Proposed strength and elongation ranges of austempered ductile iron compared to established criteria for other grades of ductile iron. DIS, Ductile Iron Society; BCIRA, British Cast Iron Research Association
More
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002178
EISBN: 978-1-62708-188-7
.... Between these two extremes lie the various commercial grades of gray, ductile, and malleable cast irons. The factors that influence machining, the selection of cutting fluid and cutting tool material, and comparisons of the machinability of different types of cast iron are included in the following...
Abstract
This article discusses the factors influencing cast iron machining and selection of cutting fluid and cutting tool materials. It presents a comparison of machinability of different types of cast iron, namely, gray cast iron, ductile cast iron, and malleable cast iron. In addition, the article provides an overview of different methods used in the machining of cast iron, namely, turning, boring, broaching, planing and shaping, drilling, reaming, counterboring and spotfacing, tapping, milling, grinding, and honing and lapping. Nominal speeds and feeds for the machining of cast iron with single-point and box tools, ceramic tools, high-speed steel, and carbide tools are also tabulated.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003165
EISBN: 978-1-62708-199-3
... conductivity. The article describes structural, instrument, and optical grade beryllium and the corresponding compositional ranges. It also discusses processing and product forms as well as factors affecting corrosion resistance. The article concludes with a short note on health and safety considerations when...
Abstract
Beryllium possesses an unusual combination of physical and mechanical properties, suiting it for specialized applications where its relatively high cost can be justified. It has very low density, a moderately high melting point, high elastic modulus, and good electrical and thermal conductivity. The article describes structural, instrument, and optical grade beryllium and the corresponding compositional ranges. It also discusses processing and product forms as well as factors affecting corrosion resistance. The article concludes with a short note on health and safety considerations when handling beryllium.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002189
EISBN: 978-1-62708-188-7
... to machine titanium require abrasion resistance and adequate hot hardness. Carbide tools (such as grades C-2 and C-3), if feasible, optimize production rates. General-purpose high-speed tool steels (such as grades M1, M2, M7, and M10) are often suitable. However, best results are generally obtained with more...
Abstract
This article focuses on the machining of reactive metals which refer collectively to the elements titanium, hafnium, and zirconium. It provides guidelines for machining titanium and titanium alloys and describes machining operations, such as turning, milling, drilling, tapping, reaming, grinding, and sawing, performed on titanium and its alloys. The article also provides information on electrochemical machining (ECM), chemical milling (CHM), and laser beam machining (LBM) for titanium and titanium alloys. Guidelines for machining zirconium alloys and hafnium are also provided. The article provides a short description of turning, milling, and drilling operations performed on zirconium alloys and hafnium. It also discusses health and safety considerations related to zirconium and hafnium.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001022
EISBN: 978-1-62708-161-0
...), with hot work continuing to 815 °C (1500 °F) and water spray cooling to 650 °C (1200 °F). The objective of the researchers responsible for developing microalloy forging steels was to obtain the enhanced mechanical properties of hot-formed steel parts while simultaneously eliminating the need for heat...
Abstract
Two high-strength low-alloy (HSLA) families, acicular-ferrite steels and pearlite-reduced steels, contain microalloying additions of vanadium and niobium. Vanadium, niobium, and titanium combine preferentially with carbon and/or nitrogen to form a fine dispersion of precipitated particles in the steel matrix. This article summarizes the metallurgical effects of vanadium, niobium, molybdenum, and titanium. The metallurgical fundamentals were first applied to forgings in the early 1970s. The ultimate strength of first- and second-generation microalloy steels is adequate for many engineering applications, but these steels do not achieve the toughness of conventional quenched and tempered alloys under normal hot-forging conditions. Third-generation microalloy steels differ from their predecessors in that they are direct quenched from the forging temperature to produce microstructures of lath martensite with uniformly distributed temper carbides. Without subsequent heat treatment, these materials achieve properties, including toughness, similar to those of standard quenched and tempered steels.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006339
EISBN: 978-1-62708-179-5
... Abstract Austempered ductile iron (ADI) results from a specialty heat treatment of ductile cast iron. This article discusses the production of austempered ductile iron by heat treatment. The austempered ductile iron grades, according to ISO 17804 and EN 1564, are presented in a table...
Abstract
Austempered ductile iron (ADI) results from a specialty heat treatment of ductile cast iron. This article discusses the production of austempered ductile iron by heat treatment. The austempered ductile iron grades, according to ISO 17804 and EN 1564, are presented in a table. For economic reasons, or to avoid metallurgical problems, combinations of alloys are often used to achieve the desired hardenability in austempered ductile iron. The article provides information on the alloy combinations for austempered ductile iron. The mechanical properties, fracture toughness, fatigue, and abrasion resistance of the austempered ductile iron are discussed. The article concludes with information on the applications for austempered ductile iron.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004025
EISBN: 978-1-62708-185-6
... simulations of increasing exactitude and complexity. Forming and forging process modeling can be finite-element-based as in popular software codes such as DEFORM (Scientific Forming Technologies Corporation, Columbus, OH) or MSC.MARC (MARC Analysis Research Corporation, Palo Alto, CA), or finite-volume-based...
Abstract
The material data for forging can be divided into two categories, namely, mechanical properties and thermophysical properties. This article describes the flow characteristics of key engineering materials, such as steels, aluminum alloys, copper alloys, titanium alloys, and nickel-base superalloys. It discusses the thermophysical properties for designing or optimizing a metalworking process: specific heat, coefficient of thermal expansion, thermal conductivity/diffusivity, and density.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002402
EISBN: 978-1-62708-193-1
... of inclusions have produced additional improvements in toughness. Typically, the procurement specifications for the Cr-Mo steels require that the room-temperature elongations meet or exceed values in the range of 18 to 22%, depending on the strength and other factors related to the specific grade. A maximum...
Abstract
Cr-Mo steels are preferred in the construction of high-temperature components because they possess excellent strength, toughness, and corrosion resistance relative to carbon steels and most low-alloy steels. This article discusses the composition and metallurgy of the heat-resistant Cr-Mo steels. It details the Charpy V-notch (CVN) toughness properties of Cr-Mo steels relevant to fatigue and fracture resistance. The fracture mechanics of Cr-Mo steels are reviewed. The article analyzes the characterization of low-cycle fatigue based on fatigue damage calculations. It concludes with information on fatigue crack growth and fatigue behavior of weldments.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001045
EISBN: 978-1-62708-161-0
... by a cylindrical specimen 25 mm (1 in.) in both diameter and length after absorbing 20 blows of 680 J (500 ft · lbf) each. Source: Abex Research Center Silicon and Phosphorus As noted in Table 1 , silicon and phosphorus are present in all ASTM A 128 grades of austenitic manganese steel. Silicon...
Abstract
This article discusses the composition, processing, and properties of austenitic manganese steel. Austenitic manganese steel is used in equipment for handling and processing earthen materials, such as rock crushers, grinding mills, dredge buckets, power shovel buckets and teeth, and pumps for handling gravel and rocks. The mechanical properties of austenitic manganese steel vary with both carbon and manganese content. Austenitic manganese steels are most commonly produced in electric arc furnaces using a basic melting practice. Heat treatment strengthens austenitic manganese steel so that it can be used safely and reliably in a wide variety of engineering applications. The approximate ranges of tensile properties produced in constructional alloy steels by heat treatment are developed in austenitic manganese steels by deformation-induced work hardening. Compared to most other abrasion-resistant ferrous alloys, manganese steels are superior in toughness and moderate in cost. Manganese steel is not corrosion resistant; it rusts readily. Many of the common applications of austenitic manganese steel involve welding, either for fabrication or for repair.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006347
EISBN: 978-1-62708-179-5
... throughout in an extended heat treatment of white iron. This article considers only the blackheart type. The different grades of malleable iron are essentially the result of different heat treatments. Just as a medium-carbon steel can be heat treated to a wide range in properties so can malleable iron...
Abstract
Malleable iron, like ductile iron, possesses considerable ductility and toughness because of its combination of nodular graphite and low-carbon metallic matrix. There are two basic types of malleable iron: blackheart and whiteheart. This article focuses on the blackheart malleable iron and discusses the chemical composition of malleable iron. A summary of mechanical properties and specifications of malleable iron castings is presented in a table. The article also reviews the mechanical properties of ferritic malleable iron and pearlitic and martensitic-pearlitic malleable irons.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006345
EISBN: 978-1-62708-179-5
... of the pipe. The Ductile Iron Pipe Research Association ( Ref 6 ) can be consulted for more on this specific product form. ASTM A897/A897M ( Ref 7 ) was adopted as a standard to designate ADI in 1990; the grades are based on tensile properties in either customary (grade 130-90-09) or SI units (900-650-09...
Abstract
Ductile iron, also known as nodular iron or spheroidal graphite iron, is second to gray iron in the amount of casting produced. This article discusses the common grades of ductile iron that differ primarily by the matrix structure that contains the spherical graphite. The grades of ductile iron designated by their tensile properties in the specification ASTM A536 are presented in a table. The article various reviews factors, such as microstructure, composition, and section effect, affecting the mechanical properties of ductile iron. It discusses the hardness properties, tensile properties, shear and torsional properties, damping capacity, compressive properties, fatigue properties, and fracture toughness of ductile iron. The article concludes with information on the applications of austempered ductile iron.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005324
EISBN: 978-1-62708-187-0
... Works Association standards specify the base material, coatings, and form of the pipe. The Ductile Iron Pipe Research Association ( Ref 6 ) can be consulted for more on this specific product form. ASTM A 897/A 897M ( Ref 7 ) was adopted as a standard to designate ADI in 1990; the grades are based...
Abstract
This article begins with a description of the classes and grades of ductile iron. It discusses the factors affecting the mechanical properties of ductile iron. The article reviews the hardness properties, tensile properties, shear and torsional properties, compressive properties, fatigue properties, fracture toughness, and physical properties of ductile iron and compares them with other cast irons to aid the designer in materials selection. It concludes with information on austempered ductile iron.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000605
EISBN: 978-1-62708-181-8
.... Tatar, Factory Mutual Research Corporation) Fig. 130 Fig. 131 Fig. 132 Fig. 133, 134 Failure of ASTM A178 grade B boiler tubes due to grain-boundary embrittlement by copper. Thick waterside deposits on tube inner-diameter surfaces impaired heat transfer, causing overheating...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of low-carbon steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the following: the intergranular fracture, bending impact fracture, brittle fracture, tensile-test fracture, transgranular fracture, cleavage fracture, delayed fracture, corrosion fatigue, inclusion morphology, fatigue crack propagation, and in-service fatigue fracture of various automotive components. These components include tie rod adjusting sleeves, automotive bolts, hydraulic jack shafts, crank handle collars, boiler tubes, drive shafts, bicycle pedal axles, lift-truck hydraulic-piston rods, and steel springs.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005330
EISBN: 978-1-62708-187-0
... casting design to use a lower-strength grade and increase the section size or modify the shape. However, if weight or size reduction is a factor to reduce operating cost over the life of a part, the initial higher-cost material may be attractive. The design freedom makes castings an attractive way...
Abstract
This article discusses the requirements that are typically considered in designing a steel casting. It describes the materials selection that forms a part of process of meeting the design criteria. The article provides information on the material selection guide for five major design applications. It examines the attributes that are specific to the manufacturing of steel castings. The article concludes with information on the various nondestructive examination methods available for ensuring manufacturing quality and part performance in steel castings.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001043
EISBN: 978-1-62708-161-0
... compositions of commercial maraging steels Grade Composition, % (a) Ni Mo Co Ti Al Nb Standard grades 18Ni(200) 18 3.3 8.5 0.2 0.1 … 18Ni(250) 18 5.0 8.5 0.4 0.1 … 18Ni(300) 18 5.0 9.0 0.7 0.1 … 18Ni(350) 18 4.2 (b) 12.5 1.6 0.1 … 18Ni(Cast) 17...
Abstract
Maraging steels comprise a special class of high-strength steels that differ from conventional steels in that they are hardened by a metallurgical reaction that does not involve carbon. Instead, these steels are strengthened by the precipitation of intermetallic compounds at temperatures of about 480 deg C. Commercial maraging steels are designed to provide specific levels of yield strength in the range of 1030 to 2420 MPa. However, some experimental maraging steels have yield strengths as high as 3450 MPa. These steels typically have very high nickel, cobalt, and molybdenum contents and very low carbon contents. This article outlines the processing of maraging steels: melting, hot working, cold working, machining, heat treating, surface treatment, and welding. It also covers mechanical and physical properties as well as tooling and aerospace applications, where maraging steels are extensively used.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005973
EISBN: 978-1-62708-168-9
... heat treatment vanadium Introduction ALL COLD-WORK TOOL STEELS described in this chapter are medium- to high-alloy grades that show good hardenability. Hardening of these grades is nowadays usually performed in vacuum furnaces with high pressure gas quenching, but some grades of lower...
Abstract
This article focuses on various heat-treating practices, namely, normalizing, annealing, stress relieving, preheating, austenitizing, quenching, tempering, and nitriding for cold-work tool steels. The cold-work tool steels include medium-alloy air-hardening tool steels, high-carbon high-chromium tool steels, and high-vanadium-powder metallurgy tool steels. The article also describes the properties, types, nominal compositions and designations of these cold-work tool steels.
1