Skip Nav Destination
Close Modal
Search Results for
repressing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 56 Search Results for
repressing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 1998
Fig. 43 Effect of repressing pressure on porosity of 316L stainless steel parts pressed from 4 to 8 tonnes/cm 2 and presintered for 15 min at 1050 °C (1920 °F). Source: Ref 10
More
Image
Published: 30 September 2015
Fig. 3 Forging modes and stress conditions on pores for (a) repressing and (b) upsetting. Source: Ref 3
More
Image
Published: 30 September 2015
Fig. 14 Influence of hot repressing temperature on flow stress for PF-4600 at various carbon contents and presintering temperatures. Data are for density of 7.4 g/cm 3 (0.267 lb/in. 3 ). Source: Ref 70 , 71
More
Image
Published: 30 September 2015
Fig. 9 Effects of various combinations of compacting and repressing pressures on final density of powder metallurgy 316L. Source: Ref 4
More
Image
Published: 30 September 2015
Fig. 10 Effects of various combinations of compacting and repressing pressures on the porosity of powder metallurgy 316L. Source: Ref 4
More
Image
Published: 30 September 2015
Fig. 10 Example of the impact of repressing on the mechanical properties of a sintered prealloyed powder metallurgy bronze. Courtesy of SCM Metal Products, Inc.
More
Image
Published: 01 January 2005
Fig. 3 Forging modes and stress conditions on pores for (a) repressing and (b) upsetting. Source: Ref 3
More
Image
Published: 01 January 2005
Fig. 15 Influence of hot repressing temperature on flow stress for P/F-4600 at various carbon contents and presintering temperatures. Data are for density of 7.4 g/cm 3 (0.267 lb/in. 3 ). Source: Ref 62 , 63
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006497
EISBN: 978-1-62708-207-5
.... It reviews emerging technologies that promise to offer exciting ways to produce aluminum parts. The article discusses the various steps involved in PM, such as powder production, compaction, sintering, repressing, and heat treatment. It provides information on aluminum production statistics and the wear...
Abstract
Aluminum powders can be formed into components by several competing technologies, including powder metallurgy (PM), metal injection molding, powder forging, and additive manufacturing. This article explores PM methodologies that are being exploited to manufacture such components. It reviews emerging technologies that promise to offer exciting ways to produce aluminum parts. The article discusses the various steps involved in PM, such as powder production, compaction, sintering, repressing, and heat treatment. It provides information on aluminum production statistics and the wear-resistance applications of PM.
Image
Published: 30 September 2015
Fig. 6 Effect of phosphorus on saturation magnetization of hot repressed iron-phosphorus alloys. Phosphorus additions between 0.45 and 0.8% P have little effect. Source: Ref 15
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006132
EISBN: 978-1-62708-175-7
... the production steps involved in cam cap manufacturing: powder production, compaction, sintering, repressing, and heat treatment. In addition, it reviews the R&D work involved in improving the structural properties of emerging aluminum alloy systems. aluminum alloys camshaft bearing cap heat...
Abstract
The powder metallurgy (PM) process is a relatively efficient and economic process that can be used to produce high quantities of aluminum components with a reasonable degree of precision and finds application in camshaft bearing cap (cam cap) production. The article discusses the production steps involved in cam cap manufacturing: powder production, compaction, sintering, repressing, and heat treatment. In addition, it reviews the R&D work involved in improving the structural properties of emerging aluminum alloy systems.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002374
EISBN: 978-1-62708-193-1
... and fracture resistance of P/M materials. It reviews the methods employed to improve fatigue and fracture resistance, including carbonitriding, surface strengthening and sealing treatments, shot-peening, case hardening, repressing and resintering, coining, sizing, and postsintering heat treatments. Safety...
Abstract
This article discusses the fracture and fatigue properties of powder metallurgy (P/M) materials depending on the microstructure. It describes the effects of porosity on the P/M processes relevant to fatigue and fracture resistance. The article details the factors determining fatigue and fracture resistance of P/M materials. It reviews the methods employed to improve fatigue and fracture resistance, including carbonitriding, surface strengthening and sealing treatments, shot-peening, case hardening, repressing and resintering, coining, sizing, and postsintering heat treatments. Safety factors for P/M materials are also detailed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003157
EISBN: 978-1-62708-199-3
..., precious metal overlays, tungsten, molybdenum, and aluminum, and composite materials. It concludes by discussing the composite manufacturing methods such as infiltration, press-sinter, press-sinter-repress process, press-sinter-extrude process, internal oxidation, and preoxidized-press-sinter-extrude...
Abstract
Electrical contacts are metal devices that make and break electrical circuits. This article describes the property requirements such as electrical conductivity, mechanical properties, chemical properties, fabrication properties, and thermal properties of make-break arcing contacts. The article also focuses on brush contact materials and their interdependence factors for sliding contacts. In addition, the article discusses the properties, manufacturing methods, and applications of electrical contact materials, including wrought materials such as copper metals, silver metals, gold metals, precious metal overlays, tungsten, molybdenum, and aluminum, and composite materials. It concludes by discussing the composite manufacturing methods such as infiltration, press-sinter, press-sinter-repress process, press-sinter-extrude process, internal oxidation, and preoxidized-press-sinter-extrude process, and coprecipitation.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003988
EISBN: 978-1-62708-185-6
.... Source: Ref 1 . (c) Powder forged low-alloy steel. Source: Ref 2 There are two basic forms of powder forging: Hot upsetting , in which the preform experiences a significant amount of lateral metal flow during forging Hot repressing , in which metal flow during forging is restricted...
Abstract
Powder forging is an extension of the conventional press and sinter powder metallurgy process, which is recognized as an effective technology for producing a variety of parts to net or near-net shape. This article focuses on the material considerations, such as powder characteristics, alloy development, and inclusion assessment; and process considerations, such as process stages, tool design, and secondary operations; of ferrous alloy powder forging. The mechanical properties of powder forged materials are also reviewed. The article discusses the quality assurance tests for powder forged materials: the part dimensions and surface finish measurement, magnetic particle inspection, metallographic analysis, and nondestructive testing. It concludes with a discussion on the applications of powder forged parts with examples.
Image
Published: 30 September 2015
Fig. 9 Experimental and predicted increase in forming pressure with density during hot repressing of steel powder
More
Image
Published: 30 September 2015
Fig. 6 Effect of density on the corrosion resistance (in B rating hours) of pressed, sintered, repressed, and annealed 317L parts
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006112
EISBN: 978-1-62708-175-7
... amount of lateral material flow Hot repressing, in which material flow during densification is mainly in the direction of pressing These two deformation modes and the stress conditions they impose on pores are illustrated in Fig. 3 . Fig. 3 Forging modes and stress conditions on pores...
Abstract
Powder forging is a process in which unsintered, presintered, and sintered powder metallurgy preforms are hot formed in confined dies. This article provides information on the basic forms of powder forging and describes the material considerations, process considerations, and mechanical properties of powder forged (PF) steels. It reviews the parameters involved in quality assurance tests for PF parts. The article includes examples of PF components and highlights the reasons for selecting them over those made by competing forming methods.
Image
Published: 01 December 1998
, but is representative of many powder metallurgy materials. The symbols are press and sinter, P/S; press, sinter, and repress, reP; press, sinter, and forge, P/S + F; cold isostatically press and sinter, CIP + S; hot isostatically press, HIP; hot isostatically press and forge, HIP + F. Source: Ref 4
More
Image
Published: 30 September 2015
materials. P/S, press and sinter; reP, press, sinter and repress; P/S+F, press, sinter and forge; CIP+S, cold isostatically press and sinter; HIP, hot isostatically press; HIP+F, hot isostatically press and forge. Source: Ref 1
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006097
EISBN: 978-1-62708-175-7
... sintering is carried out at a relatively low temperature, which produces sufficient ductility for the second pressing operation. The second sintering is carried out at a conventional sintering temperature. Takeda and Tamura ( Ref 4 ) studied the rate of densification in repressing by using three austenitic...
Abstract
This article provides an overview of the compaction of metal powder in a rigid die and reviews the compaction characteristics of stainless steel powders, including green density, compressibility, green strength, apparent density, flow rate, and sintered density. It describes the influence of compaction characteristics of stainless steel powders in tool materials selection, lubrication, annealing, double pressing/double sintering, and warm compaction.
1