Skip Nav Destination
Close Modal
Search Results for
refractory materials
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 662 Search Results for
refractory materials
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1994
Image
Published: 01 November 1995
Image
Published: 09 June 2014
Fig. 3 Heat expansion (a) of different refractory materials and (b) of quartzite with different percentages of boric acid. Source: Ref 3
More
Image
Published: 31 August 2017
Fig. 21 Heat expansion (a) of different refractory materials and (b) of quartzite with different percentages of boric acid
More
Image
Published: 01 January 2001
Image
Published: 01 January 2005
Image
Published: 01 January 2005
Fig. 5 Reactions that contribute to the corrosion of refractory materials by gas species. Source: Ref 24
More
Image
Published: 09 June 2014
Fig. 15 Dependence of specific electrical resistance of refractory material on temperature. AZS, alumina-zirconia-silica
More
Image
Published: 09 June 2014
Fig. 12 Zinc content in the refractory material in dependence on the distance to the surface of the crucible. Source: Ref 15
More
Image
Published: 01 December 2008
Fig. 7 Thermal expansion curves of various refractory brick oxide materials used for linings in induction furnaces: A, magnesia; B, chrome magnesia; C, chromite; D, silica; E, zirconia; F, corundum 99; G, corundum 90; H, fireclay; I, sillimanite; J, zircon; K, silicon carbide
More
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003841
EISBN: 978-1-62708-183-2
... in steel, glass, aluminum, and chemical-resistant applications. Specific material issues that should be considered or evaluated when choosing or using refractory materials are discussed. aluminum corrosive wear steel thermodynamics properties glass REFRACTORY MATERIALS are the working face...
Abstract
This article provides an overview of the corrosion theory relating to refractories on the basis of acid/base reactions, thermodynamics, and kinetic considerations. The tests to evaluate refractory corrosive wear are reviewed. The article describes the specific refractories used in steel, glass, aluminum, and chemical-resistant applications. Specific material issues that should be considered or evaluated when choosing or using refractory materials are discussed.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 31 January 2025
DOI: 10.31399/asm.hb.v13b.a0007042
EISBN: 978-1-62708-183-2
... Abstract This article provides a discussion on the corrosion of industrial refractory materials and technical ceramics. These materials, which are used to minimize heat losses and provide a barrier between the vessel and its contents, are utilized in the metallurgical, chemical process, power...
Abstract
This article provides a discussion on the corrosion of industrial refractory materials and technical ceramics. These materials, which are used to minimize heat losses and provide a barrier between the vessel and its contents, are utilized in the metallurgical, chemical process, power generation, automotive, and aerospace industries. The article covers the fundamental principles of chemical corrosion of refractories and ceramics, and the use of thermodynamic calculations and kinetic models to evaluate the probability of the occurrence of corrosion-causing chemical reactions. It describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001104
EISBN: 978-1-62708-162-7
... Abstract Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a soft and ductile metal binder. The performance of cemented carbide as a cutting tool lies between that of tool steel and cermets...
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a soft and ductile metal binder. The performance of cemented carbide as a cutting tool lies between that of tool steel and cermets. Almost 50% of the total production of cemented carbides is used for nonmetal cutting applications. Their properties also make them appropriate materials for structural components, including plungers, boring bars, powder compacting dies and punches, high-pressure dies and punches, and pulverizing hammers. This article discusses the manufacture, microstructure, composition, classifications, and physical and mechanical properties of cemented carbides, as well as their machining and nonmachining applications. It examines the relationship between the workpiece material, cutting tool and operational parameters, and provides suggestions to simplify the choice of cutting tool for a given machining application. It also examines new tool geometries, tailored substrates, and the application of thin, hard coatings to cemented carbides by chemical vapor deposition and physical vapor deposition. It discusses the tool wear mechanisms and the methods available for holding the carbide tool. The article is limited to tungsten carbide cobalt-base materials.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003152
EISBN: 978-1-62708-199-3
... Abstract Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a ductile metal binder. Cermet refers to a composite of a ceramic material with a metallic binder. This article discusses...
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a ductile metal binder. Cermet refers to a composite of a ceramic material with a metallic binder. This article discusses the manufacture, composition, classifications, and physical and mechanical properties of cemented carbides. It describes the application of hard coatings to cemented carbides by physical or chemical vapor deposition (PVD or CVD). Tungsten carbide-cobalt alloys, submicron tungsten carbide-cobalt alloys, and alloys containing tungsten carbide, titanium carbide, and cobalt are used for machining applications. The article also provides an overview of cermets used in machining applications.
Image
Published: 30 September 2014
Fig. 12 Fluidized-bed furnace with external heating by electrical resistance elements and recirculation of fluidizing gas. 1, pivoting cover in two parts; 2, insulation; 3, refractory material; 4, fluidized bed; 5, resistance elements; 6, filter; 7, refractory material; 8, gas inlet; 9, filter
More
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005909
EISBN: 978-1-62708-167-2
... contacts fiber optic sensors induction furnaces induction melting insulation resistance refractory lining refractory materials wear monitoring MELTING WITH INDUCTION crucible furnaces (ICFs) is a well-established and reliable technology. The mechanical and electrical construction, power supply...
Abstract
Melting with induction crucible furnaces (ICFs) is a well-established and reliable technology, and their maintenance must be performed at regularly scheduled intervals to ensure safe operation. This article discusses monitoring of the refractory lining, and presents an overview of the various wear-indication methods, namely, manual checks, ground leakage indication, evaluation of electrical values of the furnace, and temperature measurement. It also presents the working principle, physical restrictions, limitations, and remarks on these methods.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005840
EISBN: 978-1-62708-167-2
... of induction heating coils; includes rounds, squares, rectangles, ovals, and so on The copper coil winding surrounds the materials being heated, whether they are bars, billets, slabs, and so on, and generally is protected from the radiated heat via a cast refractory or liner. This radiated...
Abstract
This article is a compilation of best practices, materials, and techniques for the design and manufacture of modern induction forge coils. It presents the basics of induction coil design along with various design considerations, namely, copper tube selection, water flow considerations, and brazing and fabricating the copper coil winding for heating billets, bars, and slabs. The article describes refractory selection criteria and the methods of mounting and securing the induction coil winding, and presents general refractory installation guidelines for induction heating applications. It provides information on curing, form removal, dryout, and coil refractory seasoning. Wear rails that are designed to prevent damage to the coil refractory and subsequent coil winding are also discussed. The article concludes with a discussion on preventive maintenance practices for induction forging coils.
Image
Published: 30 September 2014
Fig. 16 Gas-fired fluidized-bed furnace with internal combustion. 1, insulating lagging; 2, refractory material; 3, air and gas distribution box; 4, fluidized bed; 5, parts to be treated
More
Image
Published: 01 December 1998
Fig. 7 Fluidized-bed furnace with external heating by electrical-resistance elements. (a) Pivoting cover. (b) Insulating lagging. (c) Refractory material. (d) Fluidized bed. (e) Resistance elements. (f) Intake for fluidizing gas (air or nitrogen). (g) Parts to be treated
More
Image
Published: 30 September 2014
Fig. 13 Externally gas-fired fluidized-bed furnace with self-regenerative burners. 1, retort; 2, heat-exchange chamber; 3, refractory material; 4, insulation; 5, burner No. 1; 6, burner No. 2; 7, reversing valve; 8, filter; 9, cover
More
1