Skip Nav Destination
Close Modal
Search Results for
refractory cermets
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-19 of 19 Search Results for
refractory cermets
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003152
EISBN: 978-1-62708-199-3
... Abstract Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a ductile metal binder. Cermet refers to a composite of a ceramic material with a metallic binder. This article discusses the...
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a ductile metal binder. Cermet refers to a composite of a ceramic material with a metallic binder. This article discusses the manufacture, composition, classifications, and physical and mechanical properties of cemented carbides. It describes the application of hard coatings to cemented carbides by physical or chemical vapor deposition (PVD or CVD). Tungsten carbide-cobalt alloys, submicron tungsten carbide-cobalt alloys, and alloys containing tungsten carbide, titanium carbide, and cobalt are used for machining applications. The article also provides an overview of cermets used in machining applications.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001320
EISBN: 978-1-62708-170-2
... Abstract The classes of tool materials for machining operations are high-speed tool steels, carbides, cermets, ceramics, polycrystalline cubic boron nitrides, and polycrystalline diamonds. This article discusses the expanding role of surface engineering in increasing the manufacturing...
Abstract
The classes of tool materials for machining operations are high-speed tool steels, carbides, cermets, ceramics, polycrystalline cubic boron nitrides, and polycrystalline diamonds. This article discusses the expanding role of surface engineering in increasing the manufacturing productivity of carbide, cermet, and ceramic cutting tool materials used in machining operations. The useful life of cutting tools may be limited by a variety of wear processes, such as crater wear, flank wear or abrasive wear, builtup edge, depth-of-cut notching, and thermal cracks. The article provides information on the applicable methods for surface engineering of cutting tools, namely, chemical vapor deposited (CVD) coatings, physical vapor deposited coatings, plasma-assisted CVD coatings, diamond coatings, and ion implantation.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001280
EISBN: 978-1-62708-170-2
..., and fire boxes of central heating boilers. Additional information is available in the section “Cermets” in this article. Coatings based on oxide materials provide underlying metals, except refractory metals, with protection against oxidation at elevated temperatures and with a high degree of...
Abstract
Ceramic coatings are applied to metals to protect them against oxidation and corrosion at room temperature and at elevated temperatures. This article provides a detailed account of the factors to be considered when selecting a ceramic coating and describes the characteristics of various coating materials, namely, silicate glasses, oxides, carbides, silicides, and cermets. It reviews ceramic coating methods: brushing, spraying, dipping, flow coating, combustion flame spraying, plasma-arc flame spraying, detonation gun spraying, pack cementation, fluidized-bed deposition, vapor streaming, troweling, and electrophoresis. The article also includes information on the evaluation of the quality of ceramic coatings.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
... materials, including ferrous alloys, nonferrous alloys, ceramics, cermets and cemented carbides, engineering plastics, polymer-matrix composites, metal-matrix composites, ceramic-matrix and carbon-carbon composites, and reviews their general property characteristics and applications. It describes the...
Abstract
The selection of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This article classifies various engineered materials, including ferrous alloys, nonferrous alloys, ceramics, cermets and cemented carbides, engineering plastics, polymer-matrix composites, metal-matrix composites, ceramic-matrix and carbon-carbon composites, and reviews their general property characteristics and applications. It describes the synergy between the elements of the materials selection process and presents a general comparison of material properties. Finally, the article provides a short note on computer aided materials selection systems, which help in proper archiving of materials selection decisions for future reference.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003188
EISBN: 978-1-62708-199-3
..., cermets, ceramics, cubic boron nitride, and polycrystalline diamond. It compares the toughness, and wear resistance for these cutting tool materials. Finally, the article explains the steps for selecting tool material grades for specific application. cemented carbides ceramics cermets cobalt-base...
Abstract
Selecting the proper cutting tool material for a specific machining application can provide substantial advantages, including increased productivity, improved quality, and reduced costs. This article begins with a description of the factors affecting the selection of a cutting tool material. This is followed by a schematic representation of their relative application ranges in terms of machining speeds and feed rates. The article provides a detailed account of chemical compositions of various tool materials, including high-speed tool steels, cobalt-base alloys, cemented carbides, cermets, ceramics, cubic boron nitride, and polycrystalline diamond. It compares the toughness, and wear resistance for these cutting tool materials. Finally, the article explains the steps for selecting tool material grades for specific application.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003838
EISBN: 978-1-62708-183-2
... of hard refractory metal compounds that have a lower-melting-temperature ductile metal binder or cement. Internationally, the term hardmetal is used in preference to the term cemented carbides, which is used almost exclusively in the United States. Figure 1 shows microstructures of both the...
Abstract
Cemented carbides are extremely important in corrosion conditions in which high hardness, wear resistance, or abrasion resistance is required. This article describes the effect of binder composition and carbide addition on corrosion behavior of cemented carbides. It lists the examples of their uses in corrosion applications. The article provides information on the selection of cemented carbides for corrosion applications and tabulates the corrosion resistance of cemented carbides in various media. It expounds the oxidation resistance of cemented carbides and presents some tips to improve the properties of tungsten carbide cutting tools. The article also details the coating materials and coating processes of cemented carbides.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003218
EISBN: 978-1-62708-199-3
... compound layer, mostly applied over hardened tool steels; high process temperature can cause distortion (a) Requires quench from austenizing temperature. Materials that cannot ordinarily be deposited by electrodeposition—for example, the refractory metals tungsten, molybdenum...
Abstract
Chemical vapor deposition (CVD) involves the formation of a coating by the reaction of the coating substance with the substrate. Serving as an introduction to CVD, the article provides information on metals, ceramics, and diamond films formed by the CVD process. It further discusses the characteristics of different pack cementation processes, including aluminizing, siliconizing, chromizing, boronizing, and multicomponent coating.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003217
EISBN: 978-1-62708-199-3
Abstract
There are various coating techniques in practice to prevent the deterioration of steels. This article focuses on dip, barrier, and chemical conversion coatings and describes hot-dip processes for coating carbon steels with zinc, aluminum, lead-tin, and other alloys. It describes continuous electrodeposition for steel strip and babbitting and discusses phosphate and chromate conversion coatings as well. It also addresses painting, discussing types and selection, surface preparation, and application methods. In addition, the article describes rust-preventive compounds and their application. It also provides information on weld-overlay and thermal spray coating, porcelain enameling, and the preparation of enamel frits for steels. The article closes by describing methods and materials for ceramic coating.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005257
EISBN: 978-1-62708-187-0
... taper pins/wedges. A vertical mold needs fixtures to fasten it onto the adapter table, and the table is bolted onto the spinner shaft. A mold used on a dual-faceplate horizontal machine can have a mold body without other mold parts. Mold materials include metallic permanent molds, refractory-lined...
Abstract
This article describes the applications, advantages, and disadvantages of three centrifugal casting processes as well as the equipment used. The processes include true centrifugal casting (horizontal, vertical, or inclined) semicentrifugal (centrifugal mold) casting, and centrifuge mold (centrifugal die) casting. The article discusses the cooling, inoculation, fluxing, and extraction of casting. It reviews mold heating and coating techniques as well as various molds used for the centrifugal casting processes. The three most common defects observed in centrifugal castings are also discussed. The article concludes with information on the applications of centrifugal force in investment casting and combustion synthesis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... materials separately, but it must be understood that, in reality, there is a continuum of materials. In addition, some materials, such as composites and cermets, can have both brittle and ductile components and exhibit mixed behavior ( Fig. 1 ). The erosion of ductile materials by solid...
Abstract
Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information on the selection of materials for applications in which erosive wear failures can occur.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003054
EISBN: 978-1-62708-200-6
... most efficient from a heat transfer point of view, while indirect heating is more flexible from a process point of view. A major limitation of fuel-fired furnaces is the necessity of using refractories that can tolerate the corrosive properties of the products of combustion. The major advantage of...
Abstract
Sintering provides the interparticle bonding that generates the attractive forces needed to hold together the otherwise loose ceramic powder mass. It also improves hardness, strength, transparency, toughness, electrical conductivity, thermal expansion, magnetic saturation, corrosion resistance, and other properties. This article discusses the fundamentals of sintering and its effects on pore structures and particle density. It addresses some of the more common sintering methods, including solid-state, liquid-phase, and gas pressure sintering, and presents alternative processes such as reaction sintering and self-propagating, high-temperature synthesis. It also describes several pressure densification methods, including hot isostatic pressing, gas pressure sintering, molten particle deposition, and sol-gel processing. The article concludes with a section on grain growth that discusses the underlying mechanisms and kinetics and the relationship between grain growth and densification.
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.9781627081719
EISBN: 978-1-62708-171-9
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003059
EISBN: 978-1-62708-200-6
Abstract
This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal structure, density, mechanical properties, physical properties, electrical properties, thermal properties, and magnetic properties.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003055
EISBN: 978-1-62708-200-6
... size. Tolerances below 1 μm (40 μin.) have been achieved ( Ref 35 , 36 ), and EDM can produce a mirror finish, even on ceramics, giving a surface roughness of less than 0.3 μm (12 μin.) ( Ref 37 , 38 ). EDM can be successfully applied to ceramics, including single phases, cermets, and ceramic-matrix...
Abstract
Ceramics usually require some form of machining prior to use to meet dimensional and surface quality standards. This article focuses on abrasive machining, particularly grinding, and addresses common methods and critical process factors. It covers cylindrical, centerless, and disk grinding and provides information on tooling, wheel selection, work material, and operational factors. It also discusses precision slicing and slotting, lapping, honing, and polishing as well as abrasive waterjet, electrical discharge, laser, and ultrasonic machining.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003062
EISBN: 978-1-62708-200-6
...-scale cell areas are expected to be about 0.4 to 1.5 m 2 . Anodes are generally porous nickel, often with a refractory oxide incorporated to reduce sintering, to allow gas flow. No anode catalyst is required for operation at 650 °C (1200 °F). Cathodes are porous nickel oxide (NiO) doped with lithium...
Abstract
Ceramic materials serve important insulative, capacitive, conductive, resistive, sensor, electrooptic, and magnetic functions in a wide variety of electrical and electronic circuitry. This article focuses on various applications of advanced ceramics in both electric power and electronics industry, namely, dielectric, piezoelectric, ferroelectric, sensing, magnetic and superconducting devices.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003061
EISBN: 978-1-62708-200-6
...) Source: The Carborundum Company. (h) Source: Alanx Products L.P. (i) Source: Cohart Refractories Corporation. (j) Source: Abresist Corporation. (k) Source: Steel Casting Companies The most commonly encountered types of wear seen in ceramics that are used in the mining and minerals...
Abstract
Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications and the parameters affecting wear of ceramics, namely, hardness, thermal conductivity, fracture toughness, and corrosion resistance. The next part of the article addresses temperature-resistant applications of advanced ceramics. Specific applications of ceramic materials addressed include cutting tools, pump and valve components, rolling elements and bearings, paper and wire manufacturing, biomedical implants, heat exchangers, adiabatic diesel engines, advanced gas turbines, and aerospace applications.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
... fumes from sulfuric and sulfurous acids. The aluminum coating (aluminizing) of iron castings imparts resistance to corrosion and heat. The coating oxidizes rapidly, thus passivating the surface. The resultant aluminum oxide is refractory in nature; it seals the surface and resists degradation at high...
Abstract
This article provides a brief review of the classification and characteristics of cast irons. It describes the processes used to clean iron castings, including mechanical cleaning and finishing and nonmechanical cleaning. The article discusses surface treatments used to extend casting life when resistance to corrosion, wear, and erosion is required. The common methods include electroplating, electroless plating, hardfacing, weld cladding, surface hardening, porcelain enameling, and organic coatings.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001304
EISBN: 978-1-62708-170-2
Abstract
This article discusses the classifications, compositions, properties, advantages, disadvantages, limitations, and applications of the most commonly used methods for surface engineering of carbon and alloy steels. These include cleaning methods, finishing methods, conversion coatings, hot-dip coating processes, electrogalvanizing, electroplating, metal cladding, organic coatings, zinc-rich coatings, porcelain enameling, thermal spraying, hardfacing, vapor-deposited coatings, surface modification, and surface hardening via heat treatment.
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.9781627081955
EISBN: 978-1-62708-195-5