Skip Nav Destination
Close Modal
By
ASM International Committee on Nondestructive Testing of Composites, R.H. Bossi, D.E. Bowles, Y. Bar-Cohen, T.E. Drake ...
Search Results for
reflectance Fourier transform infrared absorption spectroscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 60
Search Results for reflectance Fourier transform infrared absorption spectroscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003710
EISBN: 978-1-62708-182-5
... spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis. corrosion corrosion inhibition...
Abstract
This article describes the analytical methods for analyzing surfaces for corrosion and corrosion inhibition processes as well as failure analysis based on surface structure and chemical identity and composition. The principles and applications of the surface-structure analysis techniques, namely, optical microscopy, scanning electron microscopy, scanning tunneling microscopy, and atomic force microscopy, are reviewed. The article discusses the principles and applications of chemical identity and composition analysis techniques. These techniques include the energy dispersive X-ray spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006662
EISBN: 978-1-62708-213-6
... details can be gleaned from frequency shifts and intensity changes arising from the coupling of vibrations of different chemical bonds and functional groups. Recent advances in computerized IR spectroscopy, particularly Fourier transform infrared (FTIR) spectroscopy, have made it possible to obtain...
Abstract
Infrared (IR) spectra have been produced by transmission, that is, transmitting light through the sample, measuring the light intensity at the detector, and comparing it to the intensity obtained with no sample in the beam, all as a function of the infrared wavelength. This article discusses the sampling techniques and applications of IR spectra as well as the molecular structure information it can provide. The discussion begins with a description of the general principle of IR spectroscopy. This is followed by a section on commercial IR instruments. Sampling techniques and accessories necessary in obtaining the infrared spectrum of a material are then discussed. The article presents various techniques and methods involved in IR qualitative analysis and quantitative analysis. It ends with a few examples of the applications of IR spectroscopy.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001735
EISBN: 978-1-62708-178-8
.... Recent advances in computerized IR spectroscopy, particularly Fourier transform infrared (FT-IR) spectroscopy, have made it possible to obtain infrared spectra using various sampling techniques. Infrared spectra have traditionally been produced by transmission, that is, transmitting light through...
Abstract
Infrared (IR) spectroscopy is a useful technique for characterizing materials and providing information on the molecular structure, dynamics, and environment of a compound. This article provides the basic principles and instrumentation of IR spectroscopy. It discusses the sampling techniques of IR spectroscopy, namely, attenuated total reflectance spectroscopy, diffuse reflectance spectroscopy, infrared reflection-absorption spectroscopy, emission spectroscopy, and photoacoustic spectroscopy, and chromatographic techniques. Explaining the qualitative analysis of IR spectroscopy, the article provides information on spectral absorbance-subtraction, analysis of components in spectral matrix mixture, and determination of exact peak location of broad profiles. It discusses the quantitative analysis that mainly includes Beer's law for single compound in single wave number. The article also exemplifies the applications of IR spectroscopy.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005693
EISBN: 978-1-62708-178-8
... ESCA electron spectroscopy for chemical analysis ESR electron spin resonance EXAFS extended x-ray absorption fine structure FIM field ion microscopy FNAA fast neutron activation analysis FMR ferromagnetic resonance FT-IR Fourier transform infrared...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... transmitted, as illustrated in Fig. 3 . Fig. 3 Typical Fourier transform infrared spectroscopy spectrum illustrating the correlation between structure and absorption bands Results The results generated through FTIR analysis are referred to as an infrared spectrum. The spectrum graphically...
Abstract
This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical techniques are supplemented by a series of case studies to illustrate the significance of each method. The case studies also include pertinent visual examination results and the corresponding images that aided in the characterization of the failures.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
.... Fourier Transform Infrared Spectroscopy Fourier transform infrared (FTIR) spectroscopy is an analytical technique used to identify organic (and some inorganic) materials. This technique measures the absorption of infrared radiation by the sample material versus wavelength. The infrared absorption...
Abstract
This article focuses on the modes of operation, physical basis, sample requirements, properties characterized, advantages, and limitations of the characterization methods used to evaluate the physical morphology and chemical properties of component surfaces for medical devices. These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006673
EISBN: 978-1-62708-213-6
... by Fourier transform infrared spectroscopy analysis. The relative loadings of various constituents within a plastic material, including polymers, plasticizers, additives, carbon black, mineral fillers, and glass reinforcement, can be assessed. The assessment of a plastic resin composition is illustrated...
Abstract
Thermogravimetric analysis (TGA) is a thermal analysis technique that measures the amount and rate of change in the weight of a material as a function of temperature or time in a controlled atmosphere. This article provides a detailed account of the concepts of TGA, covering the various criteria to be considered for specimen preparation and calibration of TGAs. The use of thermogravimetric analysis data in the assessment of failure analysis of plastics and the combined usage of TGA with other techniques to understand the changes in the sample are also covered. The article provides examples of applications and provides information on the interpretation of TGA.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
... of the material evaluated. Fourier transform infrared spectroscopy uses infrared energy to produce vibrations within the molecular bonds that constitute the material evaluated. Vibrational states of varying energy levels exist in molecules. Transition from one vibrational state to another is related to absorption...
Abstract
This article reviews the analytical techniques most commonly used in plastic component failure analysis. These include the Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aid in the characterization of the failures. The article describes the methods used for determining the molecular weight of a plastic resin. It explains the use of mechanical testing in failure analysis and also describes the considerations in the selection and use of test methods.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
... temperature under load, Vicat temperature Mechanical spectroscopy Viscosity, normal stress difference, shear elastic and loss modulus Rheological properties, flow behavior, melt or solution elasticity, yield stress Infrared (IR) spectroscopy, Fourier transform infrared spectroscopy (FTIR) Chemical...
Abstract
This article presents tools, techniques, and procedures that engineers and material scientists can use to investigate plastic part failures. It also provides a brief survey of polymer systems and the key properties that need to be measured during failure analysis. It describes the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses the use of X-ray diffraction for analyzing crystal phases and structures in solid materials.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001764
EISBN: 978-1-62708-178-8
... important only near the absorption edge within approximately 30 eV, the x-ray absorption near-edge structure (XANES) ( Ref 23 ). This is because at low energy the scattering becomes more isotopic, and the electron mean free path becomes long. Alternatively, if the data are Fourier transformed, the multiple...
Abstract
This article provides an introduction to extended x-ray absorption fine structure (EXAFS). It describes the fundamentals of EXAFS with an emphasis on the physical mechanism, the single-scattering approximation, and multiple-scattering effects. The article discusses the use of synchrotron radiation as the x-ray source for EXAFS experiments. It also describes the typical EXAFS data analysis of pure nickel at 90 K, and explains the near-edge structure analysis of vanadium. The article presents a discussion on the unique features and applications of EXAFS.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006665
EISBN: 978-1-62708-213-6
..., deglitching, pre-edge and post-edge background removal, edge normalization, extraction of the EXAFS signal χ( k ), Fourier transform of χ( k ), and inverse transform to isolate the EXAFS contribution from a selected region in real space. Background Removal Because the smooth absorption of an isolated...
Abstract
This article provides a detailed account of extended x-ray absorption fine structure (EXAFS). It begins with a description of the fundamentals of EXAFS, providing information on the physical mechanism, single-scattering approximation, and multiple-scattering effects. This is followed by a discussion on the use of synchrotron radiation as an X-ray source for EXAFS. Data-reduction procedures used to extract EXAFS signals are then described. The article also provides information on the analysis of x-ray absorption near-edge structure spectrum and ends with a discussion on the unique features and applications of EXAFS.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006671
EISBN: 978-1-62708-213-6
..., electron probe x-ray microanalysis; FTIR, Fourier transform infrared spectroscopy; IA, image analysis; IC, ion chromatography; ICP-AES, inductively coupled plasma atomic emission spectroscopy; IR, infrared spectroscopy; LEISS, low-energy ion-scattering spectroscopy; NAA, neutron activation analysis; OES...
Abstract
The characterization, testing, and nondestructive evaluation of ceramics and glasses are vital to manufacturing control, property improvement, failure prevention, and quality assurance. This article provides a broad overview of characterization methods and their relationship to property control, both in the production and use of ceramics and glasses. Important aspects covered include the means for characterizing ceramics and glasses, the corresponding rationale behind them, and relationship of chemistry, phases, and microconstituents to engineering properties. The article also describes the effects that the structure of raw ceramic materials and green products and processing parameters have on the ultimate structure and properties of the processed piece. The effects that trace chemistry and processing parameters have on glass properties are discussed. The article describes mechanical tests and failure analysis techniques used for ceramics.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006063
EISBN: 978-1-62708-172-6
... Abstract This article provides an overview of common analytical tools used as part of the process of providing practical information regarding the causes of a coating problem or failure. The common analytical tools include Fourier transform infrared spectroscopy, differential scanning...
Abstract
This article provides an overview of common analytical tools used as part of the process of providing practical information regarding the causes of a coating problem or failure. The common analytical tools include Fourier transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy-energy dispersive X-ray spectroscopy, chromatography, and electrochemical impedance spectroscopy. Test cabinets and standard test environments for laboratory analysis are reviewed. The article describes non-standard simulation testing and case studies of simulated environments for coating failure analysis.
Book Chapter
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005692
EISBN: 978-1-62708-178-8
... fluorimetry. See fluorometric analysis. with wavelength-dispersive spectroscopy. instrument for magnification of the image formed by the objective. Fourier transform infrared (FT-IR) spec- epitaxy. Oriented growth of a crystalline trometry. A form of infrared spectrome- substance on a crystalline substrate...
Abstract
This article is a compilation of definitions of terms related to materials characterization techniques.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0006515
EISBN: 978-1-62708-200-6
... ferrite solid solution lllumination UD length-to-diameter ratio ft foot FTIR Fourier transform infrared ICP inductively coupled plasma LDPE low-density polyethylene ill inside diameter g gram IF indentation crack length/fracture LED light-emitting diode G gauss G grinding ratio; mean grain size; shear IIR...
Abstract
This article is a compilation of abbreviations, symbols, and tradenames for terms related to the properties, selection, processing, and applications of the most widely used nonmetallic engineering materials.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.9781627081788
EISBN: 978-1-62708-178-8
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001736
EISBN: 978-1-62708-178-8
... in the analysis of metal oxide systems. Metal oxide glasses provide particularly illustrative examples. Raman spectroscopy was initially applied to the investigation of glasses to overcome the problems of infrared analysis of these materials. Metal oxides exhibit strong absorption in the infrared region, making...
Abstract
This article introduces the principles of Raman spectroscopy and the representative materials characterization applications to which Raman spectroscopy has been applied. It includes a discussion of light-scattering fundamentals and a description of the experimental aspects of the technique. Emphasis has been placed on the different instrument approaches that have been developed for performing Raman analyses on various materials. The applications presented in the article reflect the breadth of materials characterization uses for Raman spectroscopy and highlight the analysis of bulk material and of surface and near-surface species.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003436
EISBN: 978-1-62708-195-5
... the use of mid- infrared lasers in the 3 to 4 μm (120 to 160 μin.) band, where the penetration depth corresponds to a volume absorption ( Ref 22 ). A 3 μm (120 μin.) absorption arises from the OH molecular vibrational mode, which, while present in all composites, can vary widely by manufacturing...
Abstract
This article introduces the principal methodologies and some technologies that are being applied for nondestructive evaluation of composite materials. These include ultrasonic testing (UT), air-coupled UT, laser UT, ultrasonic spectroscopy, leaky lamb wave method, acousto-ultrasonics, radiography, X-ray computed tomography, thermography, low-frequency vibration methods, acoustic emission, eddy current testing, optical holography, and shearography. The article presents some examples are for fiber-reinforced polymer-matrix composites. Many of the techniques have general applicability to other types of composites such as metal-matrix composites and ceramic-matrix composites.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006685
EISBN: 978-1-62708-213-6
... provide particularly illustrative examples. Raman spectroscopy was initially applied to the investigation of glasses to overcome the problems of infrared analysis of these materials. Metal oxides exhibit strong absorption in the infrared region, making analysis of bulk metal oxides virtually impossible...
Abstract
This article introduces the principles of Raman spectroscopy and the representative materials characterization applications to which Raman spectroscopy has been applied. A discussion on light-scattering fundamentals and a description of the experimental aspects of the technique are included. Emphasis is placed on the different instrument approaches that have been developed for performing Raman analyses on various materials. The applications presented reflect the breadth of materials characterization uses for Raman spectroscopy and highlight the analysis of bulk material and of surface and near-surface species.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
..., Auger electron spectroscopy; EELS, electron energy-loss spectroscopy; EPMA, electron probe x-ray microanalysis; EDS, energy-dispersive x-ray spectroscopy; FTIR, Fourier transform infrared spectroscopy; RS, Raman spectroscopy; RBS, Rutherford backscattering spectrometry; STEM, scanning transmission...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
1