1-20 of 168 Search Results for

refineries

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003700
EISBN: 978-1-62708-182-5
... Abstract This article provides useful information on the occurrence of corrosion in crude oil refinery units, namely, crude unit, catalytic and thermal cracking units, hydroprocessing units, amine sweetening units, and sour water units. Types and applications of corrosion inhibitors, namely...
Image
Published: 01 January 2002
Fig. 8 Hydrogen-damaged refinery platformer line (carbon steel, 0.5% Mo). (a) Undamaged microstructure. (b) Decarburization region caused by hydrogen depleting the iron carbides. (c) Microfissuring at inclusions. (d) Hydrogen blister caused by methane gas formation. (a) and (b), nital etch. (c More
Image
Published: 01 January 2006
Fig. 33 Stress-oriented hydrogen-induced cracking in refinery plate steel. Note the stacked array of hydrogen blister cracks going through the thickness of the material (vertical) oriented perpendicular to the direction of the applied tensile stress (horizontal). More
Image
Published: 01 January 2002
Fig. 10 Failed admiralty brass heat-exchanger tubes from a refinery reformer unit. The tubes failed by corrosion fatigue. (a) Circumferential cracks on the tension (outer) surface of the U-bends. Approximately 1 1 4 ×. (b) Blunt transgranular cracking from the water side of tube 1. 40× More
Image
Published: 30 September 2015
Fig. 1 Vale Clydach refinery flow diagram More
Image
Published: 30 September 2015
Fig. 4 Flow diagram of Copper Cliff Nickel Refinery More
Image
Published: 30 August 2021
Fig. 104 Schematic of refinery naphtha hydrotreater unit heat exchangers. There are two banks of three heat exchangers: A/B/C bank and D/E/F bank. The E heat exchanger catastrophically ruptured on April 2, 2010. More
Image
Published: 30 August 2021
Fig. 10 Failed admiralty brass heat-exchanger tubes from a refinery reformer unit. The tubes failed by corrosion fatigue. (a) Circumferential cracks on the tension (outer) surface of the U-bends. Original magnification: ~1.25×. (b) Blunt transgranular cracking from the water side of tube 1 More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004211
EISBN: 978-1-62708-184-9
... Abstract This article presents the primary considerations and mechanisms for corrosion and explains how they are involved in the selection of materials for process equipment in refineries and petrochemical plants. It discusses the material selection criteria for a number of ferrous...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004210
EISBN: 978-1-62708-184-9
... Abstract This article discusses the particular corrosion problems encountered and the corrosion control methods used in petroleum production (i.e., upstream) and the storage and transportation of oil and gas (i.e., midstream) up to the refinery (i.e., downstream). These control methods include...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006823
EISBN: 978-1-62708-329-4
... Abstract This article illustrates the use of the American Petroleum Institute (API) 579-1/ASME FFS-1 fitness-for-service (FFS) code (2020) to assess the serviceability and remaining life of a corroded flare knockout drum from an oil refinery, two fractionator columns affected by corrosion under...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... Abstract This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed...
Image
Published: 01 January 2002
Fig. 9 Dead-end piping reveals extensive black deposits through an open flange in refinery piping. More
Image
Published: 01 January 2006
Fig. 47 Effect of ammonium bisulfide concentration on corrosion at 93 °C (200 °F) of several materials in simulated refinery sour water environment More
Image
Published: 15 January 2021
Fig. 10 Reduced flow in a “dead leg” enabled extensive black deposits to build up, as observed through an open flange in refinery piping. More
Image
Published: 01 January 2002
Fig. 7 Hydrogen-induced blistering in a 9.5 mm (3/8 in.) thick carbon steel plate (ASTM A 285, grade C) that had been in service one year in a refinery vessel. 1.5× More
Image
Published: 15 January 2021
Fig. 7 Hydrogen-induced blistering in a 9.5 mm (⅜ in.) thick carbon steel plate (ASTM A285, grade C) that had been in service one year in a refinery vessel. Original magnification: 1.5× More
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006122
EISBN: 978-1-62708-175-7
... and, in 1902, built the first refinery at Clydach, South Wales, to produce high-purity nickel pellets. The International Nickel Company (Inco) acquired the plant in the 1920s, and in 1943, commercial powder production began. In 1973, Inco opened a second carbonyl plant in Sudbury, Canada, the site of its major...
Image
Published: 15 January 2021
Fig. 2 Simplified process flow diagram of potential damage mechanisms for the crude unit/vacuum unit of a refinery. Red circles indicate those types of damage mechanisms identified as stress-corrosion cracking. HIC, hydrogen-induced cracking; SOHIC, stress-oriented hydrogen-induced cracking More
Image
Published: 01 December 1998
industrial atmospheres These contain general industrial emissions such as sulfurous gases, corrosive mists, and fumes released from chemical plants and refineries. The most aggressive conditions are often found in places of intense industrial activity where the coating is frequently wetted by rain, snow More