Skip Nav Destination
Close Modal
Search Results for
recrystallized grain size
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 541 Search Results for
recrystallized grain size
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2005
Fig. 8 Statically recrystallized grain size. Predicted grain size ranges from ASTM 5.5 at the center to 6.0 near the edge, several millimeters beneath the surface. The 1s indicate regions of very slightly refined grain size or the original coarse grain size (low ASTM grain size number), while
More
Image
Published: 01 January 2005
Fig. 9 Dynamically recrystallized grain size. Predicted grain size ranges from ASTM 3.5 at the center to 7.0 near the edge, several millimeters beneath the surface. The 1s indicate regions of the original coarse grain size (low ASTM grain size number), while the 2s indicate fine grain size
More
Image
Published: 01 January 1986
Image
Published: 01 June 2016
Image
Published: 01 January 2005
Fig. 5 Progress of dynamic recrystallization when the recrystallized grain size is much smaller than the original grain size. Symbols are defined in Fig. 2(b) . Shading of grains darkens with increasing dislocation density. In (e), the fourth stage of the cascade includes new grains
More
Image
Published: 01 January 2005
Fig. 10 Effect of single-pass strains on recrystallized grain size for various initial grain sizes
More
Image
in Simulation of Microstructural Evolution in Steels
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Image
in Modeling of Microstructure Evolution during the Thermomechanical Processing of Nickel-Base Superalloys
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 22 Model predictions of the evolution of recrystallized grain size in the longitudinal section of a Waspaloy billet during the cogging process. Courtesy of the Air Force Research Laboratory
More
Image
Published: 01 December 2004
Image
Published: 01 January 2005
Fig. 60 Dynamically recrystallized grain sizes of copper and nickel as a function of the Zener-Hollomon parameter ( Z ). Source: Ref 126
More
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005403
EISBN: 978-1-62708-196-2
... dynamic recrystallization (DDRX). The article discusses the assumptions and simplifications for the Avrami analysis. It describes the effects of nucleation and growth rates on recrystallization kinetics and recrystallized grain size based on the Johnson-Mehl-Avrami-Kolmogorov model for static...
Abstract
Recrystallization is to a large extent responsible for their final mechanical properties. This article commences with a discussion on static recrystallization (SRX) and dynamic recrystallization (DRX). The DRX includes continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX). The article discusses the assumptions and simplifications for the Avrami analysis. It describes the effects of nucleation and growth rates on recrystallization kinetics and recrystallized grain size based on the Johnson-Mehl-Avrami-Kolmogorov model for static recrystallization. The article reviews the kinetics of DRX with the aid of the Avrami relations. It considers the basic framework of the mesoscale approach for DDRX, including the three basic equations for grain size changes, strain hardening and dynamic recovery, and nucleation. The article explains the mesoscale approach for CDRX to predict microstructural evolutions occurring during hot deformation, along with an illustration of the main features of the CDRX mesoscale model.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005459
EISBN: 978-1-62708-196-2
... is the strain-rate sensitivity of the fully recrystallized material. The Zener-Hollomon parameter is extremely important, inasmuch as it describes well the dependence of numerous parameters on strain rate and temperature. For example, the recrystallized grain size during steady-state flow, d s , can...
Abstract
This article summarizes the general features of microstructure evolution during the thermomechanical processing (TMP) of nickel-base superalloys and the challenges posed by the modeling of such phenomena. It describes the fundamentals and implementations of various modeling methodologies. These include JMAK (Avrami) models, topological models, and mesoscale physics-based models.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005414
EISBN: 978-1-62708-196-2
.... The condition of the austenite (grain size, degree of recrystallization, etc.) affects the phase transformations that occur during cooling following thermomechanical processing. During service at ambient temperature, steel ordinarily consists of two phases: ferrite and cementite. Different morphological...
Abstract
Computer simulation of microstructural evolution during hot rolling of steels is a major topic of research and development in academia and industry. This article describes the methodology and procedures commonly employed to develop microstructural evolution models to simulate microstructural evolution in steels. It presents an example of the integration of finite element modeling and microstructural evolution models for the simulation of metal flow and microstructural evolution in a hot rolling process.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003995
EISBN: 978-1-62708-185-6
... that deformation results in very elongated (pancakelike) austenite grains with intragranular crystalline defects, which then transform into very fine ferrite grain sizes during cooling. In another method of controlled rolling, if the rolling temperatures are high to allow recrystallization, then deformed...
Abstract
Thermomechanical processing (TMP) refers to various metal forming processes that involve careful control of thermal and deformation conditions to achieve products with required shape specifications and good properties. This article describes TMP methods in producing hot-rolled steel and reviews how improvements in the strength and toughness depend on the synergistic effect of microalloy additions and on carefully controlled thermomechanical conditions. It discusses TMP variables and the general distinctions between conventional hot rolling and common types of controlled-rolling schedules. The article describes the metallurgical processes in grain refinement of austenite steel by hot working, such as recovery and recrystallization and strain-induced transformation. The grain refinement in high strength low alloy steel by alloy addition is also discussed. The article provides an outline on the key stages of deformation, and the required metallurgical information at each of these stages.
Image
Published: 01 January 2005
Fig. 22 Effect of penultimate grain size on the recrystallization kinetics of a low-carbon steel, cold rolled 60% and annealed at 540 °C (1005 °F). Note the incubation time is shortened as the penultimate grain size before cold rolling is decreased. Source: Ref 13
More
Image
Published: 01 December 2004
Fig. 20 Effect of penultimate grain size on the recrystallization kinetics of a low-carbon steel, cold rolled 60% and annealed at 540 °C (1005 °F). Note the incubation time is shortened as the penultimate grain size before cold rolling is decreased. Source: Ref 9
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003989
EISBN: 978-1-62708-185-6
... dendritic segregation and to eliminate solute-rich second phases that often precipitate upon solidification. Initial Breakdown The initial hot working operations during cogging are designed to break down the ingot or homogenized ingot structure to a recrystallized, intermediate grain size...
Abstract
This article describes the presses, transportation equipment, and manufacturing processes associated with cogging. It discusses the practical and metallurgical issues encountered during the conversion of ingot to billet. The article explains the use of numerical modeling as part of the continuing efforts to reduce the cost and time associated with developing new cogging sequences, increase the yield, make the processes more robust, and increase the quality of the produced product.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004027
EISBN: 978-1-62708-185-6
... for the strain rates of industrial hot working, because the dynamically recrystallized grain size is small compared with the original grain size, and lead to the fall in flow stress from a peak value soon after recrystallization starts to a steady-state value at strains greater than ε s in Fig. 2(b) , when...
Abstract
The systematic study of microstructural evolution during deformation under hot working conditions is important in controlling processing variables to achieve dimensional accuracy. This article explains the microstructural features that need to be modeled and provides an outline of the principles and achievements of each of the various microstructural models, including black-box modeling, gray-box modeling, white-box modeling, and hybrid modeling.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009002
EISBN: 978-1-62708-185-6
... occurs frequently ( Ref 1 ). As in recovery and recrystallization, the driving force for grain growth is a reduction in stored energy. For grain growth, the stored energy is in the form of grain-boundary energy. Grain growth may lead to very large grain sizes (and sharp crystallographic textures...
Abstract
This article reviews the general aspects of microstructure evolution during thermomechanical processing. The effect of thermomechanical processing on microstructure evolution is summarized to provide insight into the aspect of process design. The article provides information on hot working and key processes that control microstructure evolution: dynamic recovery, static recovery, recrystallization, and grain growth. Some of the key phenomenological descriptions of plastic flow and microstructure evolution are also summarized. The article concludes with a discussion on the modeling of microstructure evolution.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004003
EISBN: 978-1-62708-185-6
... ). These intermediate grain sizes are produced by a forging and heat treating cycle that is completed above the gamma-prime solvus to allow growth of the austenite grain size. Forging above the gamma-prime solvus results in a uniform, dynamically recrystallized grain size. However, the control of strain uniformity...
Abstract
The thermomechanical processing (TMP) of conventional and advanced nickel and titanium-base alloys is aimed at altering or enhancing one or more metallurgical features within the material and component. This article presents a number of examples of the TMP of nickel-base superalloys and titanium alloys. The TMP techniques include retained-strain processing, dual-microstructure processing, and dual-alloy processing. The article also describes the TMP of alpha-beta titanium alloys, including fine-grain processing, hybrid-structure processing, dual-microstructure processing, and dual-alloy processing. It concludes with a discussion on computer simulation of advanced TMP processes.
1