Skip Nav Destination
Close Modal
Search Results for
recrystallization
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 865 Search Results for
recrystallization
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004029
EISBN: 978-1-62708-185-6
... Abstract The processing of steel involves five distinct sets of texture development mechanisms, namely, austenite deformation, austenite recrystallization, gamma-to-alpha transformation, ferrite deformation, and static recrystallization during annealing after cold rolling. This article provides...
Abstract
The processing of steel involves five distinct sets of texture development mechanisms, namely, austenite deformation, austenite recrystallization, gamma-to-alpha transformation, ferrite deformation, and static recrystallization during annealing after cold rolling. This article provides an introduction on crystallographic textures. It discusses the effects of austenite rolling and recrystallization on the texture and transformation behavior of recrystallized austenite and deformed austenite. The article illustrates the overall summary of the rolling and transformation behavior. It details cold-rolling textures, annealing textures, and recrystallization textures of steel samples. The article concludes with a summary of texture development during cold rolling and annealing.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004019
EISBN: 978-1-62708-185-6
... Abstract Recovery, recrystallization, and grain growth are microstructural changes that occur during annealing after cold plastic deformation and/or during hot working of metals. This article reviews the structure of the deformed state and describes the changes in the properties...
Abstract
Recovery, recrystallization, and grain growth are microstructural changes that occur during annealing after cold plastic deformation and/or during hot working of metals. This article reviews the structure of the deformed state and describes the changes in the properties and microstructures of a cold-worked metal during recovery stage. It discusses the recrystallization that occurs by the nucleation and growth of grains. The article also reviews the growth behavior of the grains, explaining that the grain growth can be classified into two types: normal or continuous grain growth and abnormal or discontinuous grain growth. It also examines the key mechanisms that control microstructure evolution during hot working and subsequent heat treatment. These include dynamic recovery, dynamic recrystallization, metadynamic recrystallization, static recovery, static recrystallization, and grain growth.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005432
EISBN: 978-1-62708-196-2
... Abstract This article examines how cellular automaton (CA) can be applied to the simulation of static and dynamic recrystallization. It describes the steps involved in the CA simulation of recrystallization. These include defining the CA framework, generating the initial microstructure...
Abstract
This article examines how cellular automaton (CA) can be applied to the simulation of static and dynamic recrystallization. It describes the steps involved in the CA simulation of recrystallization. These include defining the CA framework, generating the initial microstructure, distributing nuclei of recrystallized grains, growing the recrystallized grains, and updating the dislocation density. The article concludes with information on the developments in CA simulations.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005403
EISBN: 978-1-62708-196-2
... Abstract Recrystallization is to a large extent responsible for their final mechanical properties. This article commences with a discussion on static recrystallization (SRX) and dynamic recrystallization (DRX). The DRX includes continuous dynamic recrystallization (CDRX) and discontinuous...
Abstract
Recrystallization is to a large extent responsible for their final mechanical properties. This article commences with a discussion on static recrystallization (SRX) and dynamic recrystallization (DRX). The DRX includes continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX). The article discusses the assumptions and simplifications for the Avrami analysis. It describes the effects of nucleation and growth rates on recrystallization kinetics and recrystallized grain size based on the Johnson-Mehl-Avrami-Kolmogorov model for static recrystallization. The article reviews the kinetics of DRX with the aid of the Avrami relations. It considers the basic framework of the mesoscale approach for DDRX, including the three basic equations for grain size changes, strain hardening and dynamic recovery, and nucleation. The article explains the mesoscale approach for CDRX to predict microstructural evolutions occurring during hot deformation, along with an illustration of the main features of the CDRX mesoscale model.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005428
EISBN: 978-1-62708-196-2
..., abnormal grain growth, and recrystallization. It introduces the basics of the model, providing details of the dynamics, simulation variables, boundary energy, boundary mobility, pinning systems, and stored energy. The article explains how to incorporate experimental parameters and how to validate the model...
Abstract
The misorientation of a boundary of a growing grain is defined not only by its crystallography but also by the crystallography of the grain into which it is growing. This article focuses on the Monte Carlo Potts model that is typically used to model grain growth, Zener-Smith pinning, abnormal grain growth, and recrystallization. It introduces the basics of the model, providing details of the dynamics, simulation variables, boundary energy, boundary mobility, pinning systems, and stored energy. The article explains how to incorporate experimental parameters and how to validate the model by comparing the observed behavior quantitatively with theory. The industrial applications of the model are also discussed. The article also provides a wide selection of the algorithms for implementing the Potts model, such as boundary-site models, n -fold way models, and parallel models, which are needed to simulate large-scale industrial applications.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006278
EISBN: 978-1-62708-169-6
... Abstract Cast and wrought coppers can be strengthened by cold working. This article provides information on minor alloying elements, such as beryllium, silicon, nickel, tin, zinc, and chromium, used to strengthen copper. It details annealing and recrystallization and grain growth...
Abstract
Cast and wrought coppers can be strengthened by cold working. This article provides information on minor alloying elements, such as beryllium, silicon, nickel, tin, zinc, and chromium, used to strengthen copper. It details annealing and recrystallization and grain growth characteristics of copper. The article also discusses the tensile-stress-relaxation behavior of selected types of copper wires.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006284
EISBN: 978-1-62708-169-6
... Abstract This article describes the changes in structure and properties that occur when cold worked metals and alloys are annealed. Recovery, recrystallization, and grain growth are the three stages of structural change that occur when cold-worked metal is annealed. The driving force and extent...
Abstract
This article describes the changes in structure and properties that occur when cold worked metals and alloys are annealed. Recovery, recrystallization, and grain growth are the three stages of structural change that occur when cold-worked metal is annealed. The driving force and extent of structural or property changes may depend on alloy structure and the degree of prior work.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006282
EISBN: 978-1-62708-169-6
... Abstract This article provides an in-depth treatment on the deformation and recrystallization of titanium alloys. It provides information on the predominant mode of plastic deformation that occurs in titanium in terms of the most common crystallographic planes. The article explains...
Abstract
This article provides an in-depth treatment on the deformation and recrystallization of titanium alloys. It provides information on the predominant mode of plastic deformation that occurs in titanium in terms of the most common crystallographic planes. The article explains the relationship of the recovery process to the recrystallization, grain-growth process, and the effects of time and temperature on stress relief. It describes the factors that influence the rate of recrystallization and the conditions required for neocrystallization to occur. The article explains the mechanism of strain hardening and its effects on the mechanical properties of titanium alloys. It also discusses the factors that influence the superplasticity of titanium alloys.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003743
EISBN: 978-1-62708-177-1
... Abstract Recovery, recrystallization, and grain growth are the stages that a cold worked metal undergoes when it is annealed. This article describes the changes in the structure and properties that occur on annealing a cold-worked metal. It summarizes the experimental recrystallization studies...
Abstract
Recovery, recrystallization, and grain growth are the stages that a cold worked metal undergoes when it is annealed. This article describes the changes in the structure and properties that occur on annealing a cold-worked metal. It summarizes the experimental recrystallization studies by Burke and Turnbull with six laws of recrystallization. Applications of these laws of recrystallization are discussed in detail with examples. The article reviews the classification of grain growth according to the growth behavior of grains, namely, normal or continuous grain growth and abnormal or discontinuous grain growth. The latter has also been termed exaggerated grain growth, coarsening, or secondary recrystallization.
Image
Published: 01 January 1986
Fig. 73 Recrystallization nucleus (arrow) in cold-worked ferrite formed during intercritical annealing. Thin foil TEM specimen
More
Image
Published: 01 January 1986
Fig. 76 Spheroidized cementite particles pinning a recrystallization front during intercritical annealing of a low-carbon steel. Note the recovered dislocation substructure to the left of the front. Thin foil TEM specimen
More
Image
Published: 01 January 2005
Fig. 5 Progress of dynamic recrystallization when the recrystallized grain size is much smaller than the original grain size. Symbols are defined in Fig. 2(b) . Shading of grains darkens with increasing dislocation density. In (e), the fourth stage of the cascade includes new grains
More
Image
Published: 01 January 2005
Fig. 9 Microstructural development for primary recrystallization simulated using a three-dimensional cellular automaton. Source: Ref 22
More
Image
Published: 01 January 2005
Fig. 10 Microstructural evolution during recrystallization simulated using a hybrid Monte Carlo-Potts cellular automaton model; the white grains are recrystallized. Source: Ref 23
More
Image
in Transformation and Recrystallization Textures Associated with Steel Processing
> Metalworking: Bulk Forming
Published: 01 January 2005
Fig. 15 Recrystallization textures observed in the steel of Fig. 13 after rolling reductions of 50% (a), 62% (b), 75% (c), 82% (d), and 90% (e)
More
Image
in Transformation and Recrystallization Textures Associated with Steel Processing
> Metalworking: Bulk Forming
Published: 01 January 2005
Fig. 24 Orientation distribution function of nearly 400 recrystallization nuclei compiled from four orientation microscopy scans on a sample containing a recrystallized volume fraction of<5%. φ 2 =45°. Levels: 1-2-4-6-8-11
More
Image
Published: 01 January 2005
Fig. 28 Kinetics of secondary recrystallization for cube texture formation in Fe-3Si during isothermal annealing at 1050 °C (1920 °F). The characteristics of this curve for secondary recrystallization are quite similar to those for primary recrystallization. Source: Ref 14
More
Image
Published: 01 January 2005
Fig. 30 Discontinuous dynamic recrystallization (DDRX) in an initially coarse-grained nickel-base superalloy. (a) Initial stage of DDRX. (b) Nearly fully recrystallized microstructure
More
Image
Published: 01 January 2005
Fig. 41 Static recrystallization in aluminum extruded at 450 °C (840 °F). A longitudinal section, photographed with polarized light. Large, new grains of varying brightness have grown into the streaked matrix, which contains a very fine substructure. Barker's reagent. Original magnification 40
More
Image
Published: 01 January 2005
Fig. 44 Static recrystallization in Fe-3.25Si alloy compressed at 910 °C (1670 °F) to 0.31 strain, held at temperature for 30 s. Large, defect-free grains have grown into the matrix, which contains a dense array of subboundaries. Morris's reagent (see Fig. 21 ). Original magnification 1200×
More
1