Skip Nav Destination
Close Modal
Search Results for
realistic casting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 230 Search Results for
realistic casting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005406
EISBN: 978-1-62708-196-2
... the coupling of the CA to macroscopic calculation of heat, flow, and mass transfers in castings and applications to realistic casting conditions. microstructure solidification cellular automaton methods macrostructure grain structure castings heat transfers flow transfers mass transfers...
Abstract
This article focuses on the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of a structure. It presents the cellular automaton (CA) and phase field (PF) methods that represent the state of the art for modeling macrostructure and microstructure. The article describes the principles of the PF method and provides information on the applications of the PF method. The CA model is introduced as a computationally efficient method to predict grain structures in castings using the mesoscopic scale of individual grains. The article discusses the coupling of the CA to macroscopic calculation of heat, flow, and mass transfers in castings and applications to realistic casting conditions.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003729
EISBN: 978-1-62708-177-1
... Computer modeled structural regions in castings. Superheating temperatures: (a) 50 °C (122 °F), (b) 80 °C (176 °F), (c) 150 °C (302 °F). Source: Ref 12 Cellular Automaton (CA) Models The CA technique, originally developed by Hesselbarth and Göbel ( Ref 13 ), is based on the division...
Abstract
Computational modeling assists in addressing the issues of solid/liquid interface dynamics at the microlevel. It also helps to visualize the grain length scale, fraction of phases, or even microstructure transitions through microstructure maps. This article provides a detailed account of the general capabilities of the various models that can generate microstructure maps and thus transform the computer into a dynamic microscope. These include standard transport models, phase-field models, Monte Carlo models, and cellular automaton models.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005236
EISBN: 978-1-62708-187-0
... to predict grain structures in castings. Finally, the coupling of the CA to macroscopic calculation of heat, flow, and mass transfers in castings and applications to realistic casting conditions is discussed. Direct Microstructure Simulation Using the Phase Field Method A phase field Φ α ( x...
Abstract
Modeling of structure formation in casting of alloys involves several length scales, ranging from the atomic level to macroscopic scale. Intermediate length scales are used to define the microstructure of the growing phases and the grain structure. This article discusses the principles and applications of the phase field method and the cellular automaton method for modeling the direct evolution of structure at the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of the structure that involves nucleation and growth.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005427
EISBN: 978-1-62708-196-2
...' approach for modeling the age-hardening yield strength behavior of Al-Si-Cu cast alloys uses micromechanical models of precipitation strengthening that connect key microstructural parameters for realistic precipitate morphologies (e.g., {100} plates) with the age-hardening response ( Ref 7...
Abstract
Integrated computational materials engineering refers to the use of computer simulations that integrate mathematical models of complex metallurgical processes with computer models used in component and process design. This article outlines an example of a computer-aided engineering tool, such as virtual aluminum castings (VAC), developed and implemented for quickly developing durable cast aluminum power train components. It describes the procedures for the model development of the VAC system. These procedures include linking the manufacturing process to microstructure, linking microstructures to mechanical properties, linking material properties to performance prediction, and model validation and integration into the engineering process. The article discusses the benefits of the VAC system in process selection, process optimization, and improving the component design criteria.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002398
EISBN: 978-1-62708-193-1
.... Eng. Ind. (Trans. ASME) , Series B, No. 4 , Nov 1971 14. Greenberg H.D. and Clark W.G. Jr. , A Fracture Mechanics Approach to the Development of Realistic Acceptance Standards for Heavy Walled Steel Castings , Met. Eng. Quart. , Aug 1969 15. Kapadia B.M...
Abstract
This article summarizes the general fatigue and fracture properties of cast steels, namely, toughness, fatigue, and component design factors such as section size and discontinuities. It describes the various factors that influence fatigue of cast steels. These factors include section size, defect size, stress modes, and waveform types. The article discusses various fracture mechanics in cast steels: cyclic stress-strain behavior and low- and high-cycle fatigue life behavior; plane-stress fracture toughness; plane-strain fracture toughness; constant-amplitude fatigue crack initiation and growth; and variable-amplitude fatigue crack initiation and growth.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005544
EISBN: 978-1-62708-197-9
... profile, pores, casting defects, etc. Imperial College London, U.K. http://www3.imperial.ac.uk/advancedalloys/software PrecipiCalc PrecipiCalc calculates three-dimensional multiparticle diffusive precipitation kinetics of multiple phases. PrecipiCalc adopts multicomponent thermodynamics and mobility...
Abstract
This article demonstrates the depth and breadth of commercial and third-party software packages available to simulate metals processes. It provides a representation of the spectrum of applications from simulation of atomic-level effects to manufacturing optimization. The article tabulates the software name, function or process applications, vendor or developer, and website information.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005518
EISBN: 978-1-62708-197-9
... of the grains. The CA method permits an introduction of different nucleation behaviors at the surface of the casting and in the bulk, thereby allowing for a more realistic distribution of grain sizes near the mold. The method also describes the growth of columnar grains and the columnar-to-equiaxed transition...
Abstract
This article reviews the various aspects of the simulation of solidification microstructures and grain textures. It describes the grain structures and morphology of dendrites or eutectics that compose the internal structure of the grains. A particular emphasis has been put on the simulation of defects related to grain textures and microstructures. The article provides information on the application of the most important simulation approaches and the status of numerical simulation.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005234
EISBN: 978-1-62708-187-0
... Abstract This article examines the critical features of four key areas of modeling transport phenomena associated with casting processes. These include heat and species transport in a metal alloy, flow of the liquid metal, tracking of the free metal-gas surface, and inducement of metal flow via...
Abstract
This article examines the critical features of four key areas of modeling transport phenomena associated with casting processes. These include heat and species transport in a metal alloy, flow of the liquid metal, tracking of the free metal-gas surface, and inducement of metal flow via electromagnetic fields. Conservation equations that represent important physical phenomena during casting processes are presented. The article provides a discussion on how the physical phenomena can be solved. It provides information on a well-established array of general and specific computational tools that can be readily applied to modeling casting processes. The article also summarizes the key features of the conservation equations in these tools.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006331
EISBN: 978-1-62708-179-5
... Abstract In cast iron, residual stresses normally arise due to hindered thermal contraction, meaning that they are associated with the presence of constraints that prevent the natural, free volumetric variation of the material upon solid-state cooling. This article explains their mechanism...
Abstract
In cast iron, residual stresses normally arise due to hindered thermal contraction, meaning that they are associated with the presence of constraints that prevent the natural, free volumetric variation of the material upon solid-state cooling. This article explains their mechanism of formation by introducing the scalar relation, known as the additive strain decomposition. The main factors influencing casting deformation are volume changes during solidification and cooling, phase transformations, alloy composition, thermal gradients, casting geometry, and mold stability. The article reviews the dimensional stability in cast iron and discusses macroscopic and microscopic stresses in cast iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006314
EISBN: 978-1-62708-179-5
... Abstract The microstructure that develops during the solidification stage of cast iron largely influences the subsequent solid-state transformations and mechanical properties of the cast components. This article provides a brief introduction of methods that can be used for simulating...
Abstract
The microstructure that develops during the solidification stage of cast iron largely influences the subsequent solid-state transformations and mechanical properties of the cast components. This article provides a brief introduction of methods that can be used for simulating the solidification microstructure of cast iron. Analytical as well as numerical models describing solidification phenomena at both macroscopic and microscopic scales are presented. The article introduces macroscopic transport equations and presents analytical microscopic models for solidification. These models include the dendrite growth models and the cooperative eutectic growth models. The article provides some solutions using numerical models to simulate the kinetics of microstructure formation in cast iron. It concludes with a discussion on cellular automaton (CA) technique that can handle complex topology changes and reproduce most of the solidification microstructure features observed experimentally.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005525
EISBN: 978-1-62708-197-9
... solidified turbine blade casting or electroslag remelting of steels and superalloys, most or all of the solid forms in a rigid structure with little free-floating solid. In such cases, this assumption is sufficiently realistic and results in a much simpler set of equations than if the solid is not rigid...
Abstract
This article presents conservation equations for heat, species, mass, and momentum to predict transport phenomena during solidification processing. It presents transport equations and several examples of their applications to illustrate the physics present in alloy solidification. The examples demonstrate the utility of scaling analysis to explain the fundamental physics in a process and to demonstrate the limitations of simplifying assumptions. The article concludes with information on the solidification behavior of alloys as predicted by full numerical solutions of the transport equations.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005238
EISBN: 978-1-62708-187-0
... formulation, multidomain approaches, and arbitrary Lagrangian Eulerian method in solidification modeling. It illustrates the sand casting of braking disks and continuous casting of steel slabs. continuous casting distortion hot tearing mechanical behavior model validation sand casting steel slabs...
Abstract
This article summarizes some issues and approaches in performing computational analyses of mechanical behavior, distortion, and hot tearing during solidification. It presents the governing equations and describes the methods used to solve them. The article reviews the finite element formulation, multidomain approaches, and arbitrary Lagrangian Eulerian method in solidification modeling. It illustrates the sand casting of braking disks and continuous casting of steel slabs.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001023
EISBN: 978-1-62708-161-0
... Cast steels suffer less degradation of fatigue properties due to notches than equivalent wrought steels. When laboratory test conditions are replaced with more realistic service conditions, the cast steels show much less notch sensitivity than do wrought steels. Table 6 indicates that wrought steels...
Abstract
Steel castings can be made from any of the many types of carbon and alloy steel produced in wrought form. They are divided into four general groups according to composition. Carbon and low-alloy steel castings can meet a wide range of application requirements because composition and heat treatment can be selected to achieve specific combinations of properties, including hardness, strength, ductility, fatigue, and toughness. This article discusses physical, mechanical, and engineering properties as well as fatigue properties and the effects of section size and heat treatment. Highly stressed steel castings for aircraft and for high-pressure or high-temperature service must pass rigid nondestructive inspection.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005420
EISBN: 978-1-62708-196-2
... erosion, and hot-tear cracks. hot tearing casting heat-transfer modeling thermomechanical modeling microsegregation modeling solidification defects inclusion entrapment segregation shrinkage cavities gas porosity mold-wall erosion hot-tear cracks AS COMPUTATIONAL MODELS MATURE...
Abstract
This article focuses on the concepts involved in heat-transfer modeling, thermomechanical modeling, and microsegregation modeling of hot tearing. It discusses the modeling of solidification defects, namely, inclusion entrapment, segregation, shrinkage cavities, gas porosity, mold-wall erosion, and hot-tear cracks.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005221
EISBN: 978-1-62708-187-0
... Abstract This article introduces filling and feeding concepts from the general perspective of what constitutes a good casting practice. It briefly reviews the concepts that may help to clarify and quantify objectives for more effective mold-filling designs. The article describes the preprimed...
Abstract
This article introduces filling and feeding concepts from the general perspective of what constitutes a good casting practice. It briefly reviews the concepts that may help to clarify and quantify objectives for more effective mold-filling designs. The article describes the preprimed filling system through various partial solutions to the prepriming approach. It discusses the six individual parts of the naturally pressurized filling system, namely, offset stepped pouring basin, sprue, sprue/runner junction, runner, gates, and feeding via feeders. The article also lists the key features of the system.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003640
EISBN: 978-1-62708-182-5
... production equipment. In such cases, laboratory casts or heats can be made in small quantities. Although this is a valid procedure for initial tests, a promising alloy candidate should be evaluated several times by using specimens from quantities of material large enough to be representative of typical...
Abstract
When planning a corrosion-testing program, it is advisable to select the testing conditions carefully in order to produce ranking parameters with minimal influence from testing conditions while rich in engineering significance. This article provides a discussion on test objectives, metal composition and metallurgical conditions, test specimen preparation, and corrosion damage assessment. It describes a strategy for planning the design of controlled and uncontrolled factorial experiments. The article contains a table that lists the elements of an iterative process for the experimental design. It illustrates the experimental designs applied to corrosion testing.
Book Chapter
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002412
EISBN: 978-1-62708-193-1
... and approximately 33% that of aluminum. Because of this low density, both cast and wrought magnesium alloys ( Tables 1 and 2 ) have been developed for a wide variety of structural applications in which low weight is important, if not a requirement. In this context, this article briefly summarizes the fatigue...
Abstract
This article summarizes the fatigue and fracture resistance of selected magnesium alloys. It reviews the effects of surface condition and test variables on fatigue strength. The article also provides an overview of the fatigue crack growth, fracture toughness, and stress-corrosion cracking of magnesium alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005188
EISBN: 978-1-62708-187-0
... the most effect on the cost of a cast component. Dimensional Allowances and Tolerances Because dimensional allowances and tolerances affect both the cost and delivery of metal castings, it is important that part buyers have a working knowledge of the major factors influencing them. Realistic...
Abstract
This article describes the four basic steps of the purchasing process of cast components. These steps include defining requirements and developing a purchasing plan; requesting and evaluating bids from potential sources; selecting a source and negotiating contract terms; and carrying out the contract and pursuing continuous improvement. It provides guidance on purchasing cast components and explains specific issues and approaches that have proven to be useful in purchasing castings. The article presents a list of the most significant considerations when attempting to determine the overall cost and design requirements of a metal casting.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004166
EISBN: 978-1-62708-184-9
...) 5 xxx series alloys and certain AlMg casting alloys, commonly used for structural components, with magnesium content above about 3% can be susceptible to stress-corrosion cracking after extended exposure to elevated temperatures. Some 2 xxx , 7 xxx , and 6 xxx with high copper additions are also...
Abstract
This article provides an overview of the principle forms of corrosion that can occur on automotive aluminum components and offers general guidelines on how best to avoid these situations. It discusses the most common forms of aluminum corrosion such as stress-induced corrosion, cosmetic corrosion, crevice corrosion, and galvanic corrosion.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005330
EISBN: 978-1-62708-187-0
... Abstract This article discusses the requirements that are typically considered in designing a steel casting. It describes the materials selection that forms a part of process of meeting the design criteria. The article provides information on the material selection guide for five major design...
Abstract
This article discusses the requirements that are typically considered in designing a steel casting. It describes the materials selection that forms a part of process of meeting the design criteria. The article provides information on the material selection guide for five major design applications. It examines the attributes that are specific to the manufacturing of steel castings. The article concludes with information on the various nondestructive examination methods available for ensuring manufacturing quality and part performance in steel castings.
1