Skip Nav Destination
Close Modal
Search Results for
reactive deposition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 571 Search Results for
reactive deposition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001287
EISBN: 978-1-62708-170-2
... Abstract This article discusses the fundamentals of thermal vaporization and condensation and provides information on the various vaporization sources and methods of vacuum deposition. It offers an overview of reactive evaporation and its deposition techniques. The article also explains...
Abstract
This article discusses the fundamentals of thermal vaporization and condensation and provides information on the various vaporization sources and methods of vacuum deposition. It offers an overview of reactive evaporation and its deposition techniques. The article also explains the advantages, limitations, and applications of vacuum deposition processes. Finally, it provides information on the gas evaporation process, its processing chamber, and related systems.
Image
Published: 01 January 1994
Fig. 4 Relative effect of deposition temperature and bias on reactively sputter-deposited titanium nitride. A lower resistivity rating indicates that the titanium film is more dense (that is, hard) and stoichiometric. Source: Ref 46
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001286
EISBN: 978-1-62708-170-2
... crystallographic orientation density film growth growth-related properties interface formation intermetallic materials lattice defects nucleation nuclei growth physical vapor deposition reactive deposition residual film stress surface area surface coverage transport vaporization voids...
Abstract
This article describes eight stages of the atomistic film growth: vaporization of the material, transport of the material to the substrate, condensation and nucleation of the atoms, nuclei growth, interface formation, film growth, changes in structure during the deposition, and postdeposition changes. It also discusses the effects and causes of growth-related properties of films deposited by physical vapor deposition processes, including residual film stress, density, and adhesion.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001289
EISBN: 978-1-62708-170-2
... surface and the growing film are subjected to a continuous or periodic flux of energetic massive bombarding particles (ions, radicals, atoms, or molecules—reactive or inert) sufficient to cause changes in the film formation process and the properties of the deposited film ( Ref 1 , 2 , 3 , 4...
Abstract
This article begins with a list of the factors that influence the properties of physical vapor deposited films. It describes the steps involved in ion plating, namely, surface preparation, nucleation, interface formation, and film growth. The article discusses the factors influencing the properties of ion-plated films. The sources of potential applied on substrate surface, bombarding species, and depositing species are addressed. The article also provides information on the parameters that influence bombardment. It concludes with a discussion on the advantages, limitations, and applications of ion plating.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001288
EISBN: 978-1-62708-170-2
... sputtering magnetron sputtering nonreactive sputtering plasma formation process control radio-frequency sputtering reactive sputtering sputter deposition sputtered films triode sputtering unbalanced magnetron sputtering SPUTTERING is a nonthermal vaporization process in which surface atoms...
Abstract
Sputtering is a nonthermal vaporization process in which the surface atoms are physically ejected from a surface by momentum transfer from an energetic bombarding species of atomic/molecular size. It uses a glow discharge or an ion beam to generate a flux of ions incident on the target surface. This article provides an overview of the advantages and limitations of sputter deposition. It focuses on the most common sputtering techniques, namely, diode sputtering, radio-frequency sputtering, triode sputtering, magnetron sputtering, and unbalanced magnetron sputtering. The article discusses the fundamentals of plasma formation and the interactions on the target surface. A comparison of reactive and nonreactive sputtering is also provided. The article concludes with a discussion on the several methods of process control and the applications of sputtered films.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001291
EISBN: 978-1-62708-170-2
... to compound coatings in which better stoichiometry is produced when deposition occurs in the presence of a reactive gas. For instance, when compared with electron-beam evaporation and magnetron sputtering, the cathodic arc can produce stoichiometric titanium nitride over a much wider range of nitrogen partial...
Abstract
This article describes the characteristics of continuous cathodic arc sources and filtering process for removing macroparticles from a cathodic arc. It provides information on the types of arc sources and the properties of deposited materials. The advantages, limitations, and applications of arc deposition are also discussed.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001290
EISBN: 978-1-62708-170-2
... describing the use of chromium nitride ( Ref 100 ), titanium nitride ( Ref 100 ), and silicon nitride ( Ref 76 ) to protect titanium alloys. This seems to be a promising area for further research. Ion-Induced Chemical Vapor Deposition (CVD) Several researchers have used reactive IBAD (mode 3 of Table...
Abstract
Ion-beam-assisted deposition (IBAD) refers to the process wherein evaporated atoms produced by physical vapor deposition are simultaneously struck by an independently generated flux of ions. This article discusses the energy utilization of this process. It describes the physical and chemical processes occurring at the film-vacuum interface during IBAD and dual-ion-beam sputtering with illustrations. The article also reviews the methods used for large-area, high-volume implementation of IBAD and the modes of film formation for IBAD. It contains a table that presents information on deposition and synthesis of inorganic compounds by IBAD and concludes with a discussion on the improved coating properties, advantages, limitations, and applications of IBAD.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005434
EISBN: 978-1-62708-196-2
... and reactive or ion beam etching. vapor-phase process vapor-surface interaction hetereogeneous process homogenous reaction chemical vapor deposition numerical simulation molecular modeling multiscale simulation sputtering deposition ion beam etching VAPOR-PHASE PROCESSES (VPP) involve...
Abstract
This article focuses on transport phenomena and modeling approaches that are specific to vapor-phase processes (VPP). It discusses the VPP for the synthesis of materials. The article reviews the basic notions of molecular collisions and gas flows, and presents transport equations. It describes the modeling of vapor-surface interactions and kinetics of hetereogeneous processes as well as the modeling and kinetics of homogenous reactions in chemical vapor deposition (CVD). The article provides information on the various stages of developing models for numerical simulation of the transport phenomena in continuous media and transition regime flows of VPP. It explains the methods used for molecular modeling in computational materials science. The article also presents examples that illustrate multiscale simulations of CVD or PVD processes and examples that focus on sputtering deposition and reactive or ion beam etching.
Image
Published: 01 January 1994
Fig. 4 (a) Nitrogen partial pressure vs. reactive gas flow in a mixed Ar-N 2 discharge under mass flow control, at a target power of 10 kW. (b) Deposition rate vs. flow hysteresis behavior for TiN x deposition, at a target power of 10 kW, in a mixed Ar-N 2 discharge. Source: Ref 18
More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006360
EISBN: 978-1-62708-192-4
... specialized vacuum equipment. Chemical vapor deposition is performed when gas phase chemical species are energetically manipulated to condense on the substrate and form a coating. Chemical vapor deposition may be performed using thermal or plasma-enhanced (PECVD) methods for creating the reactive gas...
Abstract
This article describes two variations of carbon-base coatings: diamondlike carbon (DLC) coatings and polycrystalline diamond (PCD) coatings. It discusses the basics of a few deposition methods as they apply to industrially relevant coatings. The methods include deposition of tungsten-containing hydrogenated amorphous carbon films, deposition of tetrahedral amorphous carbon films, and deposition of silicon-incorporated hydrogenated amorphous carbon films. The most common deposition technologies for diamond films are also discussed. The article provides information on surface preparation for DLC and diamond deposition. It also provides a discussion on the coating composition and structure, mechanical and tribological properties, and applications of DLC and diamond coatings. The quality control techniques for DLC and diamond coatings are specified to meet customer requirements and ensure repeatable quality.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... or BN RT, room temperature; ARE, activated reactive evaporation; T m , absolute melting temperature. (a) Compounds: oxides, nitrides, carbides, silicides, and borides of Al, B, Cr, Hf, Mo, Nb, Ni, Re, Si, Ta, Ti, V, W, Zr Originally PVD was used to deposit single metal elements...
Abstract
Physical vapor deposition (PVD) coatings are harder than any metal and are used in applications that cannot tolerate even microscopic wear losses. This article describes the three most common PVD processes: thermal evaporation, sputtering, and ion plating. It also discusses ion implantation in the context of research and development applications.
Book Chapter
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003685
EISBN: 978-1-62708-182-5
... ) can be synthesized at very low temperatures. Furthermore, adjustment of the ratio of reactive ions to atoms arriving at the substrate surface allows adjustment of the stoichiometry of solid solutions. Fig. 4 Ion-beam-assisted deposition (IBAD) It is generally accepted that plasma plays...
Abstract
Vapor-deposition processes fall into two major categories, namely, physical vapor deposition (PVD) and chemical vapor deposition (CVD). This article describes major deposition processes such as sputtering, evaporation, ion plating, and CVD. The list of materials that can be vapor deposited is extensive and covers almost any coating requirement. The article provides a table of some corrosion-resistant vapor deposited materials. It concludes with an overview of the applications of CVD and PVD coatings and a discussion on coatings for graphite, the aluminum coating of steel, and alloy coatings for aircraft turbines, marine turbines, and industrial turbines.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006884
EISBN: 978-1-62708-392-8
... was deposited on it when DCPD was added to the C-P-F solution. Furthermore, the amount of FAp that was deposited increased with the number of repeated immersions in the solution. The reactivity of the FAp/DCPD hybrid (obtained from the C-P-F solution) with fluoride ions increased, and the lag time decreased...
Abstract
Calcium phosphates react to form more stable salts in aqueous solutions. This phenomenon has been applied to the solidification process for the dental and medical cement calcium phosphate cement, which consists of multiple phases of calcium phosphates and calcium salts; solidification occurs by the formation of hydroxyapatite. Dicalcium phosphate consists of crystal water along with anhydrous and dihydrate salts. This article summarizes research achievements regarding dicalcium phosphate dihydrate (DCPD) production with controlled morphology and reactivity, including effects of an additive and of production conditions on precipitation. It also summarizes achievements made in the hybridization of nano-apatite onto DCPD particles.
Image
Published: 01 December 2004
Fig. 21 Gas-discharge methods for deposition of interference films (a) and (b) and physical etching (c) and (d) by ion bombardment. (a) Reactive sputtering. (b) Cathodic discharge or sputtering. (c) Cathodic ion etching. (d) Ion etching. Source: adapted from Ref 1
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0005586
EISBN: 978-1-62708-170-2
... Ref reference rf radio frequency RH relative humidity RHEED reflection high-energy electron diffraction RIBAD reactive ion-beam-assisted deposition RIP reactive ion plating rms root mean square rpm revolutions per minute R q rms...