1-20 of 404 Search Results for

rare earth metals

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001089
EISBN: 978-1-62708-162-7
... Abstract Rare earth metals belong to Group IIIA of the periodic table that includes scandium, yttrium, and the lanthanide elements which are lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium...
Image
Published: 01 January 1996
Fig. 16 Relationship between transverse Charpy V-notch energy and rare-earth metal: sulfur ratio ( 2 3 -size Charpy specimens) at −18 °C (−1 °F). Source: Ref 25 More
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005442
EISBN: 978-1-62708-196-2
..., and rare earth metals is also listed. density aluminum copper iron lead magnesium nickel tin titanium zinc rare earth metals Density of metals and alloys Table 1 Density of metals and alloys Metal or alloy Density g/cm 3 lb/in. 3 Aluminum and aluminum alloys...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003836
EISBN: 978-1-62708-183-2
... the general corrosion behavior and localized corrosion behavior of transition metal-metal binary alloys, transition metal-metalloid alloys, and amorphous simple metal-transition metal-rare earth metal alloys. It concludes with a discussion on the environmentally induced fracture of glassy alloys, including...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003082
EISBN: 978-1-62708-199-3
... Abstract This article contains tables that present engineering data for the following metals and their alloys: aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, zinc, precious metals, permanent magnet materials, pure metals, rare earth metals, and actinide metals. Data presented...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003774
EISBN: 978-1-62708-177-1
... etching processes, including macroetching and color etching based on polarized light enhancement. The article concludes with an overview of the effects of alloying elements, including aluminum, beryllium, calcium, copper, iron, lithium, manganese, rare earth metals, silicon, silver, strontium, thorium...
Image
Published: 01 January 1990
Fig. 6 The standard free energies of formation of the rare earth and some selected nonrare earth oxides. Because the values of the light lanthanide metal (R) sesquioxides lie close to one another (also the heavy rare earth metal [R′] sesquioxides), the free energies are drawn in a broad band More
Image
Published: 01 December 1998
-65 pipeline steel. (c) Relationship between transverse Charpy V-notch (CVN) energy and rare earth metal sulfur ratio ( 2 3 -size Charpy specimens) at −18 °C (−1 °F). (d) Relationship between shelf energy determined on longitudinal and transverse 1 2 -size Charpy V-notch specimens More
Image
Published: 31 August 2017
Fig. 6 Sample with exploded graphite present due to excess concentration of rare earth metals More
Image
Published: 31 August 2017
Fig. 7 Sample with chunky graphite present due to excess concentration of rare earth metals More
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005457
EISBN: 978-1-62708-196-2
..., lanthanide metals, or simply lanthanides. The lanthanides together with group 3 elements yttrium (atomic number 39) and scandium (atomic number 21) are called rare earth elements, rare earth metals, or simply rare earths. The elements actinium through lawrencium (atomic numbers 89 through 103) are similarly...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006545
EISBN: 978-1-62708-183-2
.... The elements lanthanum through lutetium (atomic numbers 57 through 71) are termed lanthanide elements, lanthanide metals, or simply lanthanides. The lanthanides together with group 3 elements yttrium (atomic number 39) and scandium (atomic number 21) are called rare earth elements, rare earth metals, or simply...
Book Chapter

Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006338
EISBN: 978-1-62708-179-5
... Figure 6 shows exploded graphite within the structure. Characteristically, exploded graphite looks exactly as the name might suggest: that the graphite has been blown apart. Most MgFeSi alloys contain some rare earth metals such as cerium, lanthanum, neodymium, and praseodymium, and these are beneficial...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006258
EISBN: 978-1-62708-169-6
... and composites. It discusses the microstructures used for the most common magnesium alloys used in metal-matrix composites, namely, magnesium-aluminum, magnesium-rare earth and magnesium-lithium alloys. The article focuses on the most common methods of heat treatment, including solution heat treatment...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006328
EISBN: 978-1-62708-179-5
...; by maintaining low sulfur content (<0.020%) in the base iron; by adding up to 0.010% rare earth metals to reduce the fade rate; and by imposing end-of-pour time limits on the casting process. In practice, it is more common that temperature loss during the pouring interval results in the iron temperature...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003083
EISBN: 978-1-62708-199-3
..., lanthanide metals, or simply lanthanides. The lanthanides together with group 3 elements yttrium (atomic number 39) and scandium (atomic number 21) are called rare earth elements, rare earth metals, or simply rare earths. The elements actinium through lawrencium (atomic numbers 89 through 103...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006057
EISBN: 978-1-62708-175-7
... possible in metal injection molding parts. The article also discusses ferromagnetic cores used in alternating current applications and some permanent magnets, such as rare earth-cobalt magnets and neodymium-iron-boron (neo) magnets. ferritic stainless steel ferromagnetic cores hysteresis loss...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005334
EISBN: 978-1-62708-187-0
... applications for the retention of high mechanical properties at higher elevated temperatures (up to 205 °C, or 400 °F), thorium was substituted for the rare earth metal content in alloys of the ZE and EZ type, giving rise to the alloys of the type ZH62A and HZ32. Not only were there substantial improvements...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001094
EISBN: 978-1-62708-162-7
... and are seldom used. Cobalt and Rare-Earth Alloys Permanent magnet materials based on combinations of cobalt and the lighter rare-earth (lanthanide) metals are the materials of choice for most small, high-performance devices operating between 175 to 350 °C (345 to 660 °F). These materials are manufactured...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003138
EISBN: 978-1-62708-199-3
... treatment plus artificial aging (T6), without impairing ductility. Both of these alloys have fatigue strengths equal to those of the Mg-Al-Zn alloys, but they are more susceptible to microporosity and hot cracking, and are less weldable. Addition of either thorium or rare-earth metals overcomes...