Skip Nav Destination
Close Modal
Search Results for
radiusing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 107
Search Results for radiusing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1994
Fig. 6 Schematic of electrochemical machining: smoothing, deburring, and radiusing of piston pin. Machining parameters: U (in Fig. 2 ) = 17 V; electrolyte pressure, 0.3 MPa; electrolyte, 15% NaCl; time of machining, 75 s; maximum current per piece, 180 A
More
Image
Published: 01 January 1989
Fig. 5 Boring and radiusing a 6800 kg (7 1 2 ton) steel forging. Dimensions in figure given in inches Operating conditions for boring Speed, roughing and semifinishing, at 18 rev/min, m/min (sfm) 46 (150) Feed, roughing, mm/rev (in./rev) 0.64 (0.025) Feed
More
Image
Published: 01 January 2006
Fig. 24 Shaped blade and die that produce radiused and slotted ends with each stroke
More
Image
Published: 01 January 2002
Fig. 11 Geometry of the chamfered and radiused edges used by Lodge
More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002157
EISBN: 978-1-62708-188-7
... through the passages formed by the workpiece and tooling. It discusses the major elements of an AFM system, such as machine, tooling, and abrasive media. The article provides information on polishing, radiusing, edge finishing, and surface finishing capabilities of the AFM. It concludes with information...
Abstract
Abrasive flow machining (AFM) finishes surfaces and edges by extruding viscous abrasive media through or across the workpiece. This article commences with a schematic illustration of the AFM process that uses two opposed cylinders to extrude semisolid abrasive media back and forth through the passages formed by the workpiece and tooling. It discusses the major elements of an AFM system, such as machine, tooling, and abrasive media. The article provides information on polishing, radiusing, edge finishing, and surface finishing capabilities of the AFM. It concludes with information on the various applications of the AFM process.
Image
Published: 01 January 1989
Fig. 3 Schematic showing the flow pattern of media entering a passage, which generates the machining action used for deburring and radiusing. When radiusing or deburring passage corners, a lower media viscosity is used, providing faster flow through the center of the passage than along its
More
Image
Published: 31 October 2011
Fig. 2 (a) Lap seam weld, (b) mash seam weld with flat electrodes, and (c) mash seam weld with radiused (contoured) electrodes. Flat electrodes in mash seam welding should not be used when sheet thickness is less than 1mm (0.040 in.). Radiused electrodes can be used for sheet thicker than 1mm
More
Image
Published: 01 January 1993
Fig. 9 Effect of groove geometry on the spreadability of a preplaced filler metal. (a) Groove with sharp edges and rectangular bottom. (b) Groove with radiused corners and semicircular bottom wall
More
Image
Published: 01 January 1994
Fig. 1 Schematics of electrochemical machining (ECM) operations. (a) Die sinking. (b) Shaping of blades. (c) Drilling. (d) Milling. (e) Turning. (f) Wire ECM. (g) Drilling of curvilinear holes. (h) Deburring and radiusing. (i) Electropolishing
More
Image
Published: 01 January 2006
Fig. 4 Dies and punches most commonly used in press-brake forming. (a) 90° V-bending. (b) Offset bending. (c) Radiused 90° bending. (d) Acute-angle bending. (e) Flattening for three types of hems. (f) Combination bending and flattening. (g) Gooseneck punch for multiple bends. (h) Special
More
Image
Published: 01 December 1998
Fig. 22 Dies and punches most commonly used in press-brake forming. (a) 90° V-bending. (b) Offset bending. (c) Radiused 90° bending. (d) Acute-angle bending. (e) Flattening, for three types of hems. (f) Combination bending and flattening. (g) Gooseneck punch for multiple bends. (h) Special
More
Image
Published: 01 January 1987
it was subjected to repeated impacts by the tungsten carbide plunger. Failure initiated in a sharply radiused machining recess (see mating fracture surfaces). 1.55× (E.V. Bravenec, Anderson & Associates, Inc.)
More
Image
in Environmental and Application Factors in Solid Friction
> Friction, Lubrication, and Wear Technology
Published: 31 December 2017
Fig. 4 Wear (mass loss of material) as a function of sliding distance for pure polytetrafluoroethylene (PTFE) and different wear-path radiuses determined using the test machine shown in Fig. 3(b) . Sliding velocity = 0.5 m (19 in.)/s; load = 6 ×10 5 N/m 2 , or 12,600 lbf/ft 2 ; pin diameter
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003566
EISBN: 978-1-62708-180-1
.... Precisely what Burn had in mind is unknown, but he undoubtedly had reference at least to the chamfered or radiused edge around the periphery of the striking surface. The research carried out by McIntire and Manning yielded information about this particular aspect of tool geometry. McIntire and Manning...
Abstract
This article briefly reviews the analysis methods for spalling of striking tools with emphasis on field tests conducted by A.H. Burn and on the laboratory tests of H.O. McIntire and G.K. Manning and of J.W. Lodge. It focuses on the metallography and fractography of spalling. The macrostructure and microstructure of spall cavities are described, along with some aspects of the numerous specifications for striking/struck tools. The article also describes the availability of spall-resistant metals and the safety aspects of striking/struck tools in railway applications.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003194
EISBN: 978-1-62708-199-3
... No electrode wear; process may produce overcut, taper, and corner radiuses depending upon tool design; observed values; taper 0.001 in. over entire depth, overcut 0.005 in., corner radius 0.015 in.; tools subject to damage by arcing if process malfunctions; no machining stresses introduced; burr free machining...
Abstract
This article is a comprehensive collection of summary charts that provide data and information that are helpful in considering and selecting applicable processes alternative to the conventional material-removal processes. Process summary charts are provided for electrochemical machining, electrical discharge machining, chemical machining, abrasive jet machining, laser beam machining, electron beam machining, ultrasonic impact grinding, hydrodynamic machining, thermochemical machining, abrasive flow machining, and electrical discharge wire cutting.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005715
EISBN: 978-1-62708-171-9
... spray particles, dust, and debris and leave porous areas. The edge of a substrate as shown in Fig. 2(b) should be chamfered or radiused. Typically, 0.75 mm (0.030 in.) radii or 45° chamfers are recommended. Loads applied to the edges of coatings that have not been chamfered or radiused may cause...
Abstract
Thermal spray coating involves certain precoating operations, such as cleaning, surface preparation, and masking, that are critical to the overall quality of the coating system. In addition to these, certain other elements are considered prior to the coating, namely, customer requirements, coating function, part geometry, substrate metallurgy, structure, and thermal history. This article provides a detailed account of the various processes of surface preparation, namely, cleaning, roughening, dry abrasive grit blasting, and machining and macro roughening processes. It outlines the masking and fixturing techniques and stripping of coatings.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005608
EISBN: 978-1-62708-174-0
... ), sometimes called narrow-lap welding. Mash seam welds are produced by overlapping two sheets, with work metal compressed at the joint. Fig. 2 (a) Lap seam weld, (b) mash seam weld with flat electrodes, and (c) mash seam weld with radiused (contoured) electrodes. Flat electrodes in mash seam welding...
Abstract
This article describes the process applications, advantages, and limitations of resistance seam welding. The fundamentals of lap seam welding are also reviewed. The article details the types of seam welds, namely, lap seam welds and mash seam welds, and the processing equipment used for lap seam welding. The primary factors used to determine the selection of electrodes, including alloy type and wheel configuration, are reviewed. The article also describes weld quality and process control procedures.
1