Skip Nav Destination
Close Modal
Search Results for
radiation hardening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 492 Search Results for
radiation hardening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004147
EISBN: 978-1-62708-184-9
... for irradiation-assisted stress-corrosion cracking. The article addresses the effects of various radiation factors on corrosion. These include radiation-induced segregation at grain boundaries, radiation hardening, mode of deformation, radiation creep relaxation, and radiolysis. The article discusses a variety...
Abstract
This article examines the understanding of persistent material changes produced in stainless alloys during light water reactor (LWR) irradiation based on the fundamentals of radiation damage and existing experimental measurements. It summarizes the overall trends and correlations for irradiation-assisted stress-corrosion cracking. The article addresses the effects of various radiation factors on corrosion. These include radiation-induced segregation at grain boundaries, radiation hardening, mode of deformation, radiation creep relaxation, and radiolysis. The article discusses a variety of approaches for mitigating stress-corrosion cracking in LWRs, in categories of water chemistry, operating guidelines, new alloys, design issues, and stress mitigation. It concludes with a discussion on the irradiation effects of irradiation on corrosion of zirconium alloys in LWR environments.
Image
Published: 01 August 2013
Fig. 8 Typical flame-hardening installations using oxy-fuel gas mixtures. (a) Installation for high production of similar parts: hardening the 54 mm (2 1 8 in.) bores of hubs to a depth of approximately 3.2 mm ( 1 8 in.). Machine has a standard, retractable spindle adapted
More
Image
Published: 01 January 1987
Fig. 64 Example of a line spall in a forged, hardened steel roll. (a) Section containing the spall cut from the roll. The arrow indicates the origin of the fracture, about 6 mm (0.25 in.) below the roll surface. (b) The fracture origin at 6.5×. Fatigue beach marks originate at the arrow; gross
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003136
EISBN: 978-1-62708-199-3
.... Examples include automotive radiators, solar heating panels, communications cable, and electrical connectors. At relatively low operating temperatures, these alloys can undergo thermal softening (degradation of strength/hardness) or stress relaxation (decrease in stress resulting from transformation...
Abstract
Copper and copper alloys are used extensively in structural applications in which they are subject to moderately elevated temperatures. At relatively low operating temperatures, these alloys can undergo thermal softening or stress relaxation, which can lead to service failures. This article is a collection of curves and tables that present data on thermal softening and stress-relaxation in copper and copper alloys. Thermal softening occurs over extended periods at temperatures lower than those inducing recrystallization in commercial heat treatments. Stress relaxation occurs because of the transformation of elastic strain in the material to plastic, or permanent strain.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005879
EISBN: 978-1-62708-167-2
... exceeding as well as of convection heat transfer coef - is absolutely needed, for instance in case of the Curie point. The volumetric joule losses cient (ac) and radiation heat transfer coef cient high-power induction hardening where the Ac3 determined with the nal value of magnetic (ar), are corrected...
Abstract
Induction heating computations deal with a multiphysics problem containing analysis of several coupled physical fields such as electromagnetic, temperature, mechanical, and metallurgical. In order to solve coupled electromagnetic-temperature field problems, it is necessary to develop suitable algorithms and numerical procedures, which make it possible to deal with these nonlinear coupled problems. This article focuses on the most common approaches to coupled electromagnetic and heat transfer problems, namely, weak-, quasi-, and hard-coupled formulations.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002192
EISBN: 978-1-62708-188-7
... are due to a combination of properties, including toughness and stringiness, abrasiveness, galling, work hardening, pyrophoricity, low modulus, high density, reactivity with coolants, reactivity with tools and grinding wheels, and toxicity. These properties vary with alloy composition and heat treatment...
Abstract
This article focuses on the basic metallurgy and machining parameters of classes of depleted and enriched uranium alloys. It provides information on the health precautions applicable to the machining of depleted uranium alloys. The article also discusses tool wear and the types of tools used in uranium alloy machining.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001036
EISBN: 978-1-62708-161-0
... by neutron irradiation include swelling (volume increase), irradiation hardening, and irradiation embrittlement (the influence of irradiation hardening on fracture toughness). These effects are primarily associated with high-energy (greater than 0.1 MeV) neutrons. Consequently, irradiation damage from...
Abstract
Damage to steels from neutron irradiation affects the properties of steels and is an important factor in the design of safe and economical components for fission and fusion reactors. This article discusses the effects of high-energy neutrons on steels. The effects of damage caused by neutron irradiation include swelling (volume increase), irradiation hardening, and irradiation embrittlement (the influence of irradiation hardening on fracture toughness). These effects are primarily associated with high-energy (greater than 0.1 MeV) neutrons. Consequently, irradiation damage from neutrons is of considerable importance in fast reactors, which produce a significant flux of high-energy neutrons during operation. Irradiation embrittlement must also be considered in the development of ferritic steels for fast reactors and fusion reactors. Although ferritic steels are more resistant to swelling than austenitic steels, irradiation may have a more critical effect on the mechanical properties of ferritic steels.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006632
EISBN: 978-1-62708-213-6
... and/or mechanical plastic deformation, as in forming, machining, grinding, shot peening, welding, quenching, or virtually any thermal-mechanical process that leaves a distribution of elastic strains. Phase transformations that produce nonuniform volume changes in a part, as in carburizing or case hardening of steel...
Abstract
This article provides a detailed account of x-ray diffraction (XRD) residual-stress techniques. It begins by describing the principles of XRD stress measurement, followed by a discussion on the most common methods of XRD residual-stress measurement. Some of the procedures required for XRD residual-stress measurement are then presented. The article provides information on measurement of subsurface stress gradients and stress relaxation caused by layer removal. The article concludes with a section on examples of applications of XRD residual-stress measurement that are typical of industrial metallurgical, process development, and failure analysis investigations undertaken at Lambda Research.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001761
EISBN: 978-1-62708-178-8
... may be metallic or ceramic, provided a diffraction peak of suitable intensity and free of interference from neighboring peaks can be produced in the high back-reflection region with the radiations available. X-ray diffraction residual stress measurement is unique in that macroscopic and microscopic...
Abstract
In x-ray diffraction residual stress measurement, the strain in the crystal lattice is measured, and the residual stress producing the strain is calculated, assuming a linear elastic distortion of the crystal lattice. This article provides a detailed account of the plane stress elastic model, and describes the most common methods of x-ray diffraction residual stress measurement, namely, single-angle and two angle techniques. It elaborates the major steps involved in x-ray diffraction residual stress measurement, explaining the possible sources of error in stress measurement. The article also outlines the applications of x-ray diffraction residual stress measurement with examples.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006456
EISBN: 978-1-62708-190-0
... a linear discontinuity and two voids. (b) Corresponding mesh obtained from the CT volume in order to perform a finite-element structure analysis Basic Principles of Computed Tomography The basic technique of CT is illustrated in Fig. 3 . The testpiece is interrogated with a beam of radiation...
Abstract
Computed tomography (CT) is an imaging technique that generates a three-dimensional (3-D) volumetric image of a test piece. This article illustrates the basic principles of CT and provides information on the types, applications, and capabilities of CT systems. A comparison of performance characteristics for film radiography, real-time radiography, and X-ray computed tomography is presented in a table. A functional block diagram of a typical computed tomography system is provided. The article discusses CT scanning geometry that is used to acquire the necessary transmission data. It also provides information on digital radiography, image processing and analysis, dual-energy imaging, and partial angle imaging, of a CT system.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005761
EISBN: 978-1-62708-165-8
... in a workpiece is explained, with emphasis on the skin effect. The article discusses typical procedures for induction hardening of steel, namely, austenitizing and quenching to form martensite either on the surface (case hardening) or through the entire section (through hardening). It briefly describes induction...
Abstract
This article commences with a description of the principles of induction heating followed by a discussion on the high temperature electrical, magnetic, and thermal properties of steel, which influence the performance of induction heaters. The importance of eddy current distribution in a workpiece is explained, with emphasis on the skin effect. The article discusses typical procedures for induction hardening of steel, namely, austenitizing and quenching to form martensite either on the surface (case hardening) or through the entire section (through hardening). It briefly describes induction heating parameters for surface hardening, through hardening, tempering, and some general heating operations in metalworking.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005807
EISBN: 978-1-62708-165-8
... Abstract Flame hardening is a heat treating process in which a thin surface shell of a steel part is heated rapidly to a temperature above the critical temperatures of the steel. The versatility of flame-hardening equipment and the wide range of heating conditions obtainable with gas burners...
Abstract
Flame hardening is a heat treating process in which a thin surface shell of a steel part is heated rapidly to a temperature above the critical temperatures of the steel. The versatility of flame-hardening equipment and the wide range of heating conditions obtainable with gas burners, often permit flame hardening to be done by a variety of methods. These include the spot or stationary method, progressive method, spinning method, and the combination progressive-spinning method. This article provides information on fuel gases used in flame hardening and their selection criteria for specific applications. It also discusses operating procedures and control requirements for flame hardening of steel.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
... (4340, 52100), tool steels, and cast irons (gray, malleable, ductile). Because the absorption of laser radiation in cold metals is low, laser hardening often requires energy-absorbing coatings on surfaces. Reference 12 lists some energy-absorbing coatings. Typical case depths for steels are 250...
Abstract
Surface hardening improves the wear resistance of steel parts. This article focuses exclusively on the methods that involve surface and subsurface modification without any intentional buildup or increase in part dimensions. These include diffusion methods, such as carburizing, nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article also discusses the factors affecting the choice of these surface-hardening methods.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005835
EISBN: 978-1-62708-167-2
... Abstract Induction heating is a combination of several interrelated physical phenomena, including heat transfer, electromagnetics, and metallurgy. This article presents a brief review of different heat transfer modes, namely, heat conduction, thermal radiation, and convection. It focuses...
Abstract
Induction heating is a combination of several interrelated physical phenomena, including heat transfer, electromagnetics, and metallurgy. This article presents a brief review of different heat transfer modes, namely, heat conduction, thermal radiation, and convection. It focuses on the specifics of induction heating and heat treating applications. The article discusses the nonlinear and interrelated nature of a particular heat transfer phenomenon, physical property, and skin effect. It also presents simple case studies and general physical laws governing different heat transfer modes. The article also discusses the basic concepts of direct current and alternating current circuits, and reviews the theory of electromagnetic fields.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.9781627081672
EISBN: 978-1-62708-167-2
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.9781627081771
EISBN: 978-1-62708-177-1
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003800
EISBN: 978-1-62708-177-1
.... Contrast with abrasive wear. pha stabilizer. abrasion uid. A liquid added to an abrasion age hardening. Hardening by aging, usually af- system. The liquid may act as a lubricant, as ter rapid cooling or cold working. See also alpha double prime (orthorhombic marten- a coolant, or as a means of ushing...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003730
EISBN: 978-1-62708-177-1
... consist of multiphase microstructures. Ferrous alloys are obvious examples, as are precipitation-hardened nonferrous alloy systems. However, even single-phase metastable structures, particularly martensitic structures, have distinct morphologies that depend on composition. Other than macrostructure, which...
Abstract
This introductory article provides basic information on the various aspects of solid-state transformation: multiphase microstructures, substructures, and crystallography, which assist in characterizing the morphology of phase transformations. It contains a flowchart that illustrating the classification of transformations by growth processes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003198
EISBN: 978-1-62708-199-3
... furnaces. When vacuum furnaces are heated inductively, a graphite cylinder is used as a susceptor; the graphite is heated by induction and radiates the heat to the work inside the cylinder. When heating is provided by the more common resistance elements, the heat transfer is also completed by radiation...
Abstract
Batch furnaces and continuous furnaces are commonly used in heat treating. This article provides a detailed account of various heat treating equipment and its furnace types, including salt bath equipment (externally heated, immersed-electrode and submerged-electrode furnaces), and fluidized-bed equipment (external-resistance-heated fluidized beds). It describes various auxiliary equipment used in cold-wall furnaces, namely, heating elements and pumping systems. Five types of heat-resistant alloys are used for furnace parts, trays, and fixtures: Fe-Cr alloys, Fe-Cr-Ni alloys, Fe-Ni-Cr alloys, nickel-base alloys and cobalt-base alloys. The article lists the recommended applications for alloys for parts and fixtures for various types of heat treating furnaces.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006455
EISBN: 978-1-62708-190-0
... sections radiographic film processing THE TERM RADIOGRAPHY often refers to the specific radiological method that produces an image on film (conventional radiography) or digitally using detection systems that fluoresce once exposed to penetrating radiation (with x-rays or γ-rays). This article...
Abstract
Film radiography requires the development of the exposed film so that the latent image becomes visible for viewing. It describes the general characteristics of film, including speed, gradient, and graininess, and the factors affecting film selection and exposure time. The article discusses the three major inspection techniques for tubular sections, namely, the double-wall, double-image technique; the double-wall, single-image technique; and the single-wall, single-image technique. It illustrates the arrangements of penetrameters and identification markers for the radiography of plates, cylinders, and flanges. The article discusses various control methods, including the use of lead screens; protection against backscatter and scatter from external objects; and the use of masks, diaphragms, collimators, and filtration. The radiographic appearance of specific types of flaws is also discussed. The article concludes with a discussion on two methods of radiographic film processing: manual and automatic processing.
1