Skip Nav Destination
Close Modal
Search Results for
radiant heat transfer
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 154 Search Results for
radiant heat transfer
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Materials for Heat-Treating Furnace Parts, Trays, and Fixtures[1]
> Steel Heat Treating Technologies
Published: 30 September 2014
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005529
EISBN: 978-1-62708-197-9
... heating electrical heating heat flow simulation heat transfer properties heat treatment heating heat-source model heat-transfer model radiant-tube heating THE FIRST STEP IN EVERY HEAT TREATING PROCESS is heating the parts to the desired temperature. The heating process takes valuable time...
Abstract
This article provides information on the heat-source model, conduction heat-transfer model of parts and fixtures, and the radiation heat-transfer and convection heat-transfer models in a furnace. It describes the two types of furnaces used for heat treating: batch furnaces and continuous furnaces. The heating methods, such as direct-fired heating, radiant-tube heating, and electrical heating, are also discussed. Furnace temperature control is essential to ensure quality heat treatment. The article explains the operating procedure of the automatic temperature controllers used in most furnace operations. Heating simulations can be validated by comparison with measured results in full-scale furnaces. The article also presents several case studies to illustrate the use of the simulations.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005930
EISBN: 978-1-62708-166-5
... equipment nonferrous metals radiant heat transfer radiant tubes silicon carbide Introduction High-temperature furnaces usually have an outer metallic shell with an interior lined with ceramic refractories for thermal insulation. Heat-treating furnace accessories also include trays, baskets, pots...
Abstract
This article reviews high-temperature corrosion of furnace parts used in heat-treating furnaces. It provides a comparison of cast and wrought materials in the context of their general considerations, advantages, and applications. The article provides information on the heat-resistant alloys used for parts that go through the furnaces, including trays, fixtures, conveyor chains and belts, and quenching fixtures and parts, and the parts that remain in the furnace such as combustion tubes, radiant tubes, burners, thermowells, roller and skid rails, baskets, pots, retorts, muffles, and drive and idler drums. The article also reviews the material characteristics of silicon/silicon carbide composite and reaction-bonded silicon carbide as used in radiant tubes.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005350
EISBN: 978-1-62708-187-0
... radiant heat (a highly efficient method of transferring heat into aluminum), where the heat source (burners) is located 46 to 61 cm (18 to 24 in.) off the bath for best practices. The closer the heat source is to the aluminum, the faster the transfer of Btus. The temperature differential between...
Abstract
This article illustrates the basic components of dry and wet hearth reverberatory furnaces. It discusses stack melters that are used for aluminum metal casting, as they are efficient in sealing the furnace and using the flue gases to preheat the charge materials. The article describes the various factors for improving and maintaining furnace efficiencies. It explains the benefits of circulating molten metal in reverberatory furnaces and circulation methods.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005449
EISBN: 978-1-62708-196-2
... ∂ n ) = + q ″ at n = s (b) − k ( ∂ T ∂ n ) = − q ″ at n = s Insulation at the surface ∂ T ∂ n = 0 at n = s Heat transfer to the ambient with temperature T ∞ by convection − k ∂ T ∂ n...
Abstract
This article is a comprehensive collection of formulas, tables, and analytical solutions, addressing hundreds of heat-transfer scenarios encountered in science and engineering. It also demonstrates how to set up and solve real-world problems, while accounting for material properties, environmental variables, boundary and state conditions, and the primary modes of heat transfer: conduction, convection, and radiation.
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005993
EISBN: 978-1-62708-166-5
... as convection heat transfer. All bodies emit radiant energy. An ideal radiator, called a black body, emits radiant energy at a rate proportional to the fourth power of the absolute temperature of the body. This is known as Stefan-Boltzmann law of thermal radiation. Other surfaces, such as a glossy painted...
Abstract
This article is a comprehensive collection of formulas, tables, and analytical solutions, addressing hundreds of heat-transfer scenarios encountered in science and engineering. With detailed explanations and dimensioned drawings, the article demonstrates how to set up and solve real-world problems, accounting for material properties, environmental variables, boundary and state conditions, and the primary modes of heat transfer: conduction, convection, and radiation. The article also includes reference data and provides closed-form solutions for common heat-transfer applications such as insulated pipes, cooling fins, radiation shields, and composite structures and configurations.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005911
EISBN: 978-1-62708-167-2
... glass within a segment of a continuous melting tank. In one patent he suggests using induction as the energy source to directly heat glass in a secondary vessel/chamber, after initially melting the glass batch by radiant heat transfer such as with combustion ( Ref 15 ). The second vessel acts...
Abstract
The historical use of induction heating relating to glass melting gives some insight into its use in today's glass manufacturing industry. A patent search on induction heating provides historical information about how induction heating was used in the glass melting industry, from both a direct fired or a susceptor/container approach. This article provides review of historical patents, following an introduction to conductivity in glass and electrical heating. The purpose is to show that induction heating has been and is being used in the glass melting industry.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001399
EISBN: 978-1-62708-173-3
... to block the gas from impinging on adjacent areas or on a component body directly. Common nozzle materials are stainless steel or quartz glass. Gas Flow Rates Gas flow rates primarily determine heat transfer efficiency (that is, the temperature and heating rate of the workpiece) and may affect...
Abstract
Hot gas soldering is a process that is commonly used in applications where the workpiece thermal mass is small and the melting temperature of the solder is relatively low. This article describes the characteristics of hot gas heating that are critical to its effectiveness in soldering. These characteristics include the focus of gas flow, gas flow rates (velocity and volume), gas temperature, and typical gas media. The article explains the thermal profile of a component being soldered and the temperature across adjacent components, which helps to understand time-temperature relationship. It concludes with a discussion on reliability concerns and processing concerns when using hot gas soldering in electronics assembly.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001395
EISBN: 978-1-62708-173-3
... reflow soldering method. A fluid that has a boiling point higher than the solder melting point is heated and the vapor is contained in a chamber, through which the PWB assembly is passed. Heat transfer is achieved through the heat of vaporization released by the fluid as it condenses on the PWB surface...
Abstract
Furnace soldering (FS) encompasses a group of reflow soldering techniques in which the parts to be joined and preplaced filler metal are put in a furnace and then heated to the soldering temperature. This article describes three reflow soldering techniques in surface-mount technology, namely, vapor-phase reflow, area conduction, and infrared heating. These three techniques are considered as mass reflow techniques, because all of the solderable interconnections on the surface of a printed wiring board (PWB) assembly are brought through the reflow heating cycle simultaneously. The article explains four regions of reflow profile, namely, preheat (prebake), preflow (soak), reflow, and cooldown. It concludes with a description on the bare copper assembly process, which is carried out in the inert atmosphere.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005957
EISBN: 978-1-62708-166-5
...), application, heating method, mode of heat transfer, type of materials handling system, and mode of waste heat recovery (recuperation and regeneration). It provides information on uniform temperature distribution, the general requirements and selection criteria for insulation materials, as well as the basic...
Abstract
Furnaces are one of the most versatile types of industrial appliances that span many different areas of use. This article discusses the classification of various furnaces used in heat treating based on the mode of operation (batch-type furnaces and continuous-type furnaces), application, heating method, mode of heat transfer, type of materials handling system, and mode of waste heat recovery (recuperation and regeneration). It provides information on uniform temperature distribution, the general requirements and selection criteria for insulation materials, as well as the basic safety requirements of these furnaces.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003061
EISBN: 978-1-62708-200-6
... Abstract Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications...
Abstract
Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications and the parameters affecting wear of ceramics, namely, hardness, thermal conductivity, fracture toughness, and corrosion resistance. The next part of the article addresses temperature-resistant applications of advanced ceramics. Specific applications of ceramic materials addressed include cutting tools, pump and valve components, rolling elements and bearings, paper and wire manufacturing, biomedical implants, heat exchangers, adiabatic diesel engines, advanced gas turbines, and aerospace applications.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005835
EISBN: 978-1-62708-167-2
... properties radiant heat transfer thermal conductivity Induction heating is a combination of several interrelated physical phenomena, which includes, but is not limited to, heat transfer, electromagnetics, and metallurgy. Physical properties of heated materials are complex functions of these phenomena...
Abstract
Induction heating is a combination of several interrelated physical phenomena, including heat transfer, electromagnetics, and metallurgy. This article presents a brief review of different heat transfer modes, namely, heat conduction, thermal radiation, and convection. It focuses on the specifics of induction heating and heat treating applications. The article discusses the nonlinear and interrelated nature of a particular heat transfer phenomenon, physical property, and skin effect. It also presents simple case studies and general physical laws governing different heat transfer modes. The article also discusses the basic concepts of direct current and alternating current circuits, and reviews the theory of electromagnetic fields.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006914
EISBN: 978-1-62708-395-9
... or structure, is characterized ( Ref 6 ). The following discussion considers the burning process on a macroscale, where it comprises heating, decomposition, ignition, combustion, and propagation ( Ref 7 ). The rate of heat release is dependent on the speed at which combustion occurs and other heat transfer...
Abstract
A material is flammable if it is subject to easy ignition and rapidly flaming combustion. The plastics that are most widely used are the least expensive and tend to be the most flammable. This article describes the two basic approaches to improving the fire resistance of a polymeric material: modifying or substituting the basic polymer so that exposure to heat and oxygen will not produce rapid combustion, and using flame-retardant additives. It also provides an overview of the burning process and presents two flammability test methods.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003029
EISBN: 978-1-62708-200-6
... that drip, melt, or disintegrate. Fig. 2 The Steiner tunnel furnace used to evaluate the flame spread of materials in ASTM E 84. Source: Ref 13 ASTM E 162, “Standard Test Method for Surface Flammability of Materials Using a Radiant Heat Energy Source” ( Ref 14 ), uses a refractory panel...
Abstract
Flammability is the ability of a material to undergo easy ignition and rapid flaming combustion. This article provides information on flammability tests of polymers and codes and regulations that cite these tests. Many organizations are involved in the characterization and specification of flammability properties, resulting in several categorization strategies for flammability tests, including tests for specific fire response characteristics, research tests versus acceptance tests, tests for different levels of severity, and tests for basis of origin. The article presents an overview on the basic approaches in improving the fire resistance of polymers and the burning process (heating, decomposition, ignition, combustion, and propagation). It provides a brief description on the test methods which are classified into two types, one based on fire response characteristics and the other on particular applications of polymeric materials.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005352
EISBN: 978-1-62708-187-0
... that the burners above the melt transfer more radiant heat to the surface of the melt. If the surface temperature becomes hotter than the lower parts of the bath, then the heat transfer for melting become less efficient in reverberatory furnaces. Other nonferrous alloys, such as zinc, magnesium, and copper, also...
Abstract
This article discusses various molten-metal treatments, namely fluxing, degassing, and molten-metal filtration. It focuses on various molten-metal handling systems for transporting, holding, or delivering molten metal to the mold/die system. These include launders, tundishes, holding furnaces or transport crucibles, molten-metal transfer pumps, teeming ladles, and dosing and pouring furnaces.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005230
EISBN: 978-1-62708-187-0
... (<italic>h</italic>) ranges for various heat treatment furnaces Table 2 Relative heat-transfer coefficient ( h ) ranges for various heat treatment furnaces Heating medium or furnace type h , Wm −2 K −1 Lead 1200–1800 Salt bath 500–1200 Fluidized bed 500–700 Radiant fluidized bed...
Abstract
This article provides an overview of heat treatment processes, namely, solution heat treatment, quenching, natural aging, and artificial aging. It contains a table that lists the various heat treatment tempers commonly practiced for nonferrous castings. The article describes microstructural changes that occur due to the heat treatment of cast alloys.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003322
EISBN: 978-1-62708-176-4
... such as Young's modulus and workability data can also be obtained from these tests. Data reduction procedures, such as temperature correction and fitting to constitutive equations, are provided. Finally, testing for interfacial properties such as the friction coefficient and heat-transfer coefficient...
Abstract
Forming processes can be divided into three major categories: bulk forming, sheet-metal forming, and semisolid forming and polymer extrusion. This article introduces each process category with a description of the constitutive models. It outlines the required properties for process modeling and describes the test methods for determining these properties. The article discusses several compression tests used to determine stress-strain curves for bulk forming and tensile tests used to obtain stress-strain curves for sheet-metal forming. The article concludes with information on the measurement of viscosity of semisolid alloy materials by using three types of viscometers: the coaxial cylinder viscometer, the cone-and-plate viscometer, and the capillary viscometer.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005501
EISBN: 978-1-62708-197-9
... applications are presented. casting casting defects ductile cast iron hot tearing macrosegregation microstructure porosity solidification thermophysical properties CASTING AND SOLIDIFICATION PROCESSES are modeled in terms of thermodynamics, heat transfer, fluid flow, stress, defect formation...
Abstract
This article reviews the topic of computational thermodynamics and introduces the calculation of solidification paths for casting alloys. It discusses the calculation of thermophysical properties and the fundamentals of the modeling of solidification processes. The article describes several commonly used microstructure simulation methods and presents ductile iron casting as an example to demonstrate the ability of microstructure simulation. The predictions for the major defects of casting, such as porosity, hot tearing, and macrosegregation, are highlighted. Finally, several industry applications are presented.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005923
EISBN: 978-1-62708-166-5
... occurs on the bath surface. This entrained air reduces the heat-transfer rate, and the foaming of oils could lead to fires. Quench Tank Type There are several different types of quench tanks, classified according to the application: open or continuous. A quench tank used in an integral quench...
Abstract
Quenchant agitation can be obtained by circulating quenchant in a quench tank through pumps and impellers. The selection of the agitation method depends on the tank design, type and volume of the quenchant, part design, and the severity of quench required. This article describes flow measurement methods, temperature control, materials handling, and filtration processes during the agitation process. The maintenance of quenching installations is also discussed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001362
EISBN: 978-1-62708-173-3
...), as is that of the GMAW part of the system. The heat of the plasma arc is sufficient to achieve good metal transfer stability for the GMAW element, despite the fact that when this process is used separately, it is almost always used in a direct-current, electrode positive (DCEP) mode. The filler wire is heated...
Abstract
Plasma-metal inert gas (MIG) welding can be defined as a combination of plasma arc welding (PAW) and gas-metal arc welding (GMAW) within a single torch, where a filler wire is fed through the plasma nozzle orifice. This article describes the principles of operation and operating modes of plasma-MIG welding. It discusses the advantages and disadvantages of the plasma-MIG process. The article describes the components, including power sources and welding torches, of equipment used for the plasma-MIG process. It provides information on inspection and weld quality control and troubleshooting techniques. The article concludes with a discussion on the applications of the plasma-MIG process.
1